Что такое удельная теплоемкость


Удельная теплоёмкость — урок. Физика, 8 класс.

Для того чтобы нагреть на определённую величину тела, взятые при одинаковой температуре, изготовленные из различных веществ, но имеющие одинаковую массу, требуется разное количество теплоты.

Пример:

Для нагревания \(1\) кг воды на \(1 \)°С требуется количество теплоты, равное \(4200\) Дж. А если нагревать \(1\) кг цинка на \(1\) °С, то потребуется всего \(400\) Дж. 

Физическая величина, численно равная количеству теплоты, которое необходимо передать веществу массой \(1\) кг для того, чтобы его температура изменилась на \(1\) °С, называется удельной теплоёмкостью вещества.

Обрати внимание!

Удельная теплоёмкость обозначается буквой \(с\) и измеряется в Дж/(кг·°С).

Пример:

Удельная теплоёмкость серебра равна \(240\) Дж/(кг·°С). Это означает, что для нагревания серебра массой \(1\) кг на \(1\) °С необходимо количество теплоты, равное \(240\) Дж.

При охлаждении серебра массой \(1\) кг на \(1\) °С выделится количество теплоты, равное \(240\) Дж.

Это означает, что если меняется температура серебра массой \(1\) кг на \(1\) °С, то оно или поглощает, или выделяет количество теплоты, равное \(240\) Дж.

Таблица 1. Удельная теплоёмкость некоторых веществ.

 

Твёрдые вещества

Вещество

\(c\),

Дж/(кг·°С)

Алюминий

\(920\)

Бетон

\(880\)

Дерево

\(2700\)

Железо,

сталь

\(460\)

Золото

\(130\)

Кирпич

\(750\)

Латунь

\(380\)

Лёд

\(2100\)

Медь

\(380\)

Нафталин

\(1300\)

Олово

\(230\)

Парафин

\(3200\)

Песок

\(970\)

Платина

\(130\)

Свинец

\(120\)

Серебро

\(240\)

Стекло

\(840\)

Цемент

\(800\)

Цинк

\(400\)

Чугун

\(550\)

Сера

\(710\)

 

Жидкости

Вещество

\(c\),

Дж/(кг·°C)

Вода

\(4200\)

Глицерин

\(2400\)

Железо

\(830\)

Керосин

\(2140\)

Масло

подсолнечное

\(1700\)

Масло

трансформаторное

\(2000\)

Ртуть

\(120\)

Спирт

этиловый

\(2400\)

Эфир

серный

\(2300\)

 

Газы (при постоянном давлении и температуре \(20\) °С)

Вещество

\(c\),

Дж/(кг·°C)

Азот

\(1000\)

Аммиак

\(2100\)

Водород

\(14300\)

Водяной

пар

\(2200\)

Воздух

\(1000\)

Гелий

\(5200\)

Кислород

\(920\)

Углекислый

газ

\(830\)

 

Удельная теплоемкость реальных газов, в отличие от идеальных газов, зависит от давления и температуры. И если зависимостью удельной теплоемкости реальных газов от давления в практических задачах можно пренебречь, то зависимость удельной теплоемкости газов от температуры необходимо учитывать, поскольку она очень существенна.

 

Обрати внимание!

Удельная теплоёмкость вещества, находящегося в различных агрегатных состояниях, различна.

Пример:

Вода в жидком состоянии имеет удельную теплоёмкость, равную \(4200\) Дж/(кг·°С), в твёрдом состоянии (лёд) — \(2100\) Дж/(кг·°С), в газообразном состоянии (водяной пар) — \(2200\) Дж/(кг·°С).

Вода — вещество особенное, обладающее самой высокой среди жидкостей удельной теплоёмкостью. Но самое интересное, что теплоёмкость воды снижается при температуре от \(0\) °С до \(37\) °С и снова растёт при дальнейшем нагревании.

 

 

В связи с этим вода в морях и океанах, нагреваясь летом, поглощает из окружающей среды огромное количество теплоты. А зимой вода остывает и отдаёт в окружающую среду большое количество теплоты. Поэтому в районах, расположенных вблизи водоёмов, летом не бывает очень жарко, а зимой очень холодно.

 

 

Из-за высокой удельной теплоёмкости воду широко используют в технике и быту. Например, в отопительных системах домов, при охлаждении деталей во время их обработки на станках, в медицине (в грелках) и др.

 

 

Именно благодаря высокой удельной теплоёмкости вода является одним из лучших средств для борьбы с огнём. Соприкасаясь с пламенем, она моментально превращается в пар, отнимая большое количество теплоты у горящего предмета.

 

 

Помимо непосредственного отвода тепла, вода гасит пламя ещё и косвенным образом. Водяной пар, образующийся при контакте с огнём, окутывает горящее тело, предотвращая поступление кислорода, без которого горение невозможно.

Какой водой эффективнее тушить огонь: горячей или холодной? Горячая вода тушит огонь быстрее, чем холодная. Дело в том, что нагретая вода скорее превратится в пар, а значит, и отсечёт поступление воздуха к горящему объекту.

 

Источники:

Пёрышкин А.В. Физика, 8 кл.: учебник. — М.: Дрофа, 2013. — 237 с.

www.infourok.ru

www.puzzleit.ru

www.libma.ru

www.englishhelponline.files.wordpress.com

www.avd16.ru

Конспект "Количество теплоты. Удельная теплоёмкость"

«Количество теплоты. Удельная теплоёмкость»



Количество теплоты

Изменение внутренней энергии путём совершения работы характеризуется величиной работы, т.е. работа является мерой изменения внутренней энергии в данном процессе. Изменение внутренней энергии тела при теплопередаче характеризуется величиной, называемой количествоv теплоты.

Количество теплоты – это изменение внутренней энергии тела в процессе теплопередачи без совершения работы.  Количество теплоты обозначают буквой Q.

Работа, внутренняя энергия и количество теплоты измеряются в одних и тех же единицах — джоулях (Дж), как и всякий вид энергии.

В тепловых измерениях в качестве единицы количества теплоты раньше использовалась особая единица энергии — калория (кал), равная количеству теплоты, необходимому для нагревания 1 грамма воды на 1 градус Цельсия (точнее, от 19,5 до 20,5 °С). Данную единицу, в частности, используют в настоящее время при расчетах потребления тепла (тепловой энергии) в многоквартирных домах. Опытным путем установлен механический эквивалент теплоты — соотношение между калорией и джоулем: 1 кал = 4,2 Дж.

При передаче телу некоторого количества теплоты без совершения работы его внутренняя энергия увеличивается, если тело отдаёт какое-то количество теплоты, то его внутренняя энергия уменьшается.

Если в два одинаковых сосуда налить в один 100 г воды, а в другой 400 г при одной и той же температуре и поставить их на одинаковые горелки, то раньше закипит вода в первом сосуде. Таким образом, чем больше масса тела, тем большее количество тепла требуется ему для нагревания. То же самое и с охлаждением.

Количество теплоты, необходимое для нагревания тела зависит еще и от рода вещества, из которого это тело сделано. Эта зависимость количества теплоты, необходимого для нагревания тела, от рода вещества характеризуется физической величиной, называемой удельной теплоёмкостью вещества.



Удельная теплоёмкость

Удельная теплоёмкость – это физическая величина, равная количеству теплоты, которое необходимо сообщить 1 кг вещества для нагревания его на 1 °С (или на 1 К). Такое же количество теплоты 1 кг вещества отдаёт при охлаждении на 1 °С.

Удельная теплоёмкость обозначается буквой с. Единицей удельной теплоёмкости является 1 Дж/кг °С или 1 Дж/кг °К.

Значения удельной теплоёмкости веществ определяют экспериментально. Жидкости имеют большую удельную теплоёмкость, чем металлы; самую большую удельную теплоёмкость имеет вода, очень маленькую удельную теплоёмкость имеет золото.

Поскольку кол-во теплоты равно изменению внутренней энергии тела, то можно сказать, что удельная теплоёмкость показывает, на сколько изменяется внутренняя энергия 1 кг вещества при изменении его температуры на 1 °С. В частности, внутренняя энергия 1 кг свинца при его нагревании на 1 °С увеличивается на 140 Дж, а при охлаждении уменьшается на 140 Дж.

Количество теплоты Q, необходимое для нагревания тела массой m от температуры t1°С до температуры t2°С, равно произведению удельной теплоёмкости вещества, массы тела и разности конечной и начальной температур, т.е.

Q = c ∙ m (t2 — t1

По этой же формуле вычисляется и количество теплоты, которое тело отдаёт при охлаждении. Только в этом случае от начальной температуры следует отнять конечную, т.е. от большего значения температуры отнять меньшее.


Это конспект по теме «Количество теплоты. Удельная теплоёмкость». Выберите дальнейшие действия:

 

Таблицы удельной теплоемкости веществ: газов, жидкостей, металлов, продуктов

АБС пластик 1300…2300
Аглопоритобетон и бетон на топливных (котельных) шлаках 840
Алмаз 502
Аргиллит 700…1000
Асбест волокнистый 1050
Асбестоцемент 1500
Асботекстолит 1670
Асбошифер 837
Асфальт 920…2100
Асфальтобетон 1680
Аэрогель (Aspen aerogels) 700
Базальт 850…920
Барит 461
Береза 1250
Бетон 710…1130
Битумоперлит 1130
Битумы нефтяные строительные и кровельные 1680
Бумага 1090…1500
Вата минеральная 920
Вата стеклянная 800
Вата хлопчатобумажная 1675
Вата шлаковая 750
Вермикулит 840
Вермикулитобетон 840
Винипласт 1000
Войлок шерстяной 1700
Воск 2930
Газо- и пенобетон, газо- и пеносиликат, газо- и пенозолобетон 840
Гетинакс 1400
Гипс формованный сухой 1050
Гипсокартон 950
Глина 750
Глина огнеупорная 800
Глинозем 700…840
Гнейс (облицовка) 880
Гравий (наполнитель) 850
Гравий керамзитовый 840
Гравий шунгизитовый 840
Гранит (облицовка) 880…920
Графит 708
Грунт влажный (почва) 2010
Грунт лунный 740
Грунт песчаный 900
Грунт сухой 850
Гудрон 1675
Диабаз 800…900
Динас 737
Доломит 600…1500
Дуб 2300
Железобетон 840
Железобетон набивной 840
Зола древесная 750
Известняк (облицовка) 850…920
Изделия из вспученного перлита на битумном связующем 1680
Ил песчаный 1000…2100
Камень строительный 920
Капрон 2300
Карболит черный 1900
Картон гофрированный 1150
Картон облицовочный 2300
Картон плотный 1200
Картон строительный многослойный 2390
Каучук натуральный 1400
Кварц кристаллический 836
Кварцит 700…1300
Керамзит 750
Керамзитобетон и керамзитопенобетон 840
Кирпич динасовый 905
Кирпич карборундовый 700
Кирпич красный плотный 840…880
Кирпич магнезитовый 1055
Кирпич облицовочный 880
Кирпич огнеупорный полукислый 885
Кирпич силикатный 750…840
Кирпич строительный 800
Кирпич трепельный 710
Кирпич шамотный 930
Кладка «Поротон» 900
Кладка бутовая из камней средней плотности 880
Кладка газосиликатная 880
Кладка из глиняного обыкновенного кирпича 880
Кладка из керамического пустотного кирпича 880
Кладка из силикатного кирпича 880
Кладка из трепельного кирпича 880
Кладка из шлакового кирпича 880
Кокс порошкообразный 1210
Корунд 711
Краска масляная (эмаль) 650…2000
Кремний 714
Лава вулканическая 840
Латунь 400
Лед из тяжелой воды 2220
Лед при температуре 0°С 2150
Лед при температуре -100°С 1170
Лед при температуре -20°С 1950
Лед при температуре -60°С 1700
Линолеум 1470
Листы асбестоцементные плоские 840
Листы гипсовые обшивочные (сухая штукатурка) 840
Лузга подсолнечная 1500
Магнетит 586
Малахит 740
Маты и полосы из стекловолокна прошивные 840
Маты минераловатные прошивные и на синтетическом связующем 840
Мел 800…880
Миканит 250
Мипора 1420
Мрамор (облицовка) 880
Настил палубный 1100
Нафталин 1300
Нейлон 1600
Неопрен 1700
Пакля 2300
Парафин 2890
Паркет дубовый 1100
Паркет штучный 880
Паркет щитовой 880
Пемзобетон 840
Пенобетон 840
Пенопласт ПХВ-1 и ПВ-1 1260
Пенополистирол 1340
Пенополистирол «Пеноплекс» 1600
Пенополиуретан 1470
Пеностекло или газостекло 840
Пергамин 1680
Перекрытие армокерамическое с бетонным заполнением без штукатурки 850
Перекрытие из железобетонных элементов со штукатуркой 860
Перекрытие монолитное плоское железобетонное 840
Перлитобетон 840
Перлитопласт-бетон 1050
Перлитофосфогелевые изделия 1050
Песок для строительных работ 840
Песок речной мелкий 700…840
Песок речной мелкий (влажный) 2090
Песок сахарный 1260
Песок сухой 800
Пихта 2700
Пластмасса полиэфирная 1000…2300
Плита пробковая 1850
Плиты алебастровые 750
Плиты древесно-волокнистые и древесно-стружечные (ДСП, ДВП) 2300
Плиты из гипса 840
Плиты из резольноформальдегидного пенопласта 1680
Плиты из стеклянного штапельного волокна на синтетическом связующем 840
Плиты камышитовые 2300
Плиты льнокостричные изоляционные 2300
Плиты минераловатные повышенной жесткости 840
Плиты минераловатные полужесткие на крахмальном связующем 840
Плиты торфяные теплоизоляционные 2300
Плиты фибролитовые и арболит на портландцементе 2300
Покрытие ковровое 1100
Пол гипсовый бесшовный 800
Поливинилхлорид (ПВХ) 920…1200
Поликарбонат (дифлон) 1100…1120
Полиметилметакрилат 1200…1650
Полипропилен 1930
Полистирол УПП1, ППС 900
Полистиролбетон 1060
Полихлорвинил 1130…1200
Полихлортрифторэтилен 920
Полиэтилен высокой плотности 1900…2300
Полиэтилен низкой плотности 1700
Портландцемент 1130
Пробка 2050
Пробка гранулированная 1800
Раствор гипсовый затирочный 900
Раствор гипсоперлитовый 840
Раствор гипсоперлитовый поризованный 840
Раствор известково-песчаный 840
Раствор известковый 920
Раствор сложный (песок, известь, цемент) 840
Раствор цементно-перлитовый 840
Раствор цементно-песчаный 840
Раствор цементно-шлаковый 840
Резина мягкая 1380
Резина пористая 2050
Резина твердая обыкновенная 1350…1400
Рубероид 1500…1680
Сера 715
Сланец 700…1600
Слюда 880
Смола эпоксидная 800…1100
Снег лежалый при 0°С 2100
Снег свежевыпавший 2090
Сосна и ель 2300
Сосна смолистая 15% влажности 2700
Стекло зеркальное (зеркало) 780
Стекло кварцевое 890
Стекло лабораторное 840
Стекло обыкновенное, оконное 670
Стекло флинт 490
Стекловата 800
Стекловолокно 840
Стеклопластик 800
Стружка деревянная прессованая 1080
Текстолит 1470…1510
Толь 1680
Торф 1880
Торфоплиты 2100
Туф (облицовка) 750…880
Туфобетон 840
Уголь древесный 960
Уголь каменный 1310
Фанера клееная 2300…2500
Фарфор 750…1090
Фибролит (серый) 1670
Циркон 670
Шамот 825
Шифер 750
Шлак гранулированный 750
Шлак котельный 700…750
Шлакобетон 800
Шлакопемзобетон (термозитобетон) 840
Шлакопемзопено- и шлакопемзогазобетон 840
Штукатурка гипсовая 840
Штукатурка из полистирольного раствора 1200
Штукатурка известковая 950
Штукатурка известковая с каменной пылью 920
Штукатурка перлитовая 1130
Штукатурка фасадная с полимерными добавками 880
Шунгизитобетон 840
Щебень и песок из перлита вспученного 840
Щебень из доменного шлака, шлаковой пемзы и аглопорита 840
Эбонит 1430
Эковата 2300
Этрол 1500…1800

Количество теплоты. Удельная теплоёмкость – FIZI4KA

1. Изменение внутренней энергии путём совершения работы характеризуется величиной работы, т.е. работа является мерой изменения внутренней энергии в данном процессе. Изменение внутренней энергии тела при теплопередаче характеризуется величиной, называемой количеством теплоты.

Количеством теплоты называется изменение внутренней энергии тела в процессе теплопередачи без совершения работы.

Количество теплоты обозначают буквой ​\( Q \)​. Так как количество теплоты является мерой изменения внутренней энергии, то его единицей является джоуль (1 Дж).

При передаче телу некоторого количества теплоты без совершения работы его внутренняя энергия увеличивается, если тело отдаёт какое-то количество теплоты, то его внутренняя энергия уменьшается.

2. Если в два одинаковых сосуда налить в один 100 г воды, а в другой 400 г при одной и той же температуре и поставить их на одинаковые горелки, то раньше закипит вода в первом сосуде. Таким образом, чем больше масса тела, тем большее количество теплоты требуется ему для нагревания. То же самое и с охлаждением: тело большей массы при охлаждении отдаёт большее количество теплоты. Эти тела сделаны из одного и того же вещества и нагреваются они или охлаждаются на одно и то же число градусов.

\[ Q\sim m \]

​3. Если теперь нагревать 100 г воды от 30 до 60 °С, т.е. на 30 °С, а затем до 100 °С, т.е. на 70 °С, то в первом случае на нагревание уйдёт меньше времени, чем во втором, и, соответственно, на нагревание воды на 30 °С, будет затрачено меньшее количество теплоты, чем на нагревание воды на 70 °С. Таким образом, количество теплоты прямо пропорционально разности конечной ​\( (t_2\,^\circ C) \)​ и начальной \( (t_1\,^\circ C) \) температур: ​\( Q\sim(t_2-t_1) \)​.

4. Если теперь в один сосуд налить 100 г воды, а в другой такой же сосуд налить немного воды и положить в неё такое металлическое тело, чтобы его масса и масса воды составляли 100 г, и нагревать сосуды на одинаковых плитках, то можно заметить, что в сосуде, в котором находится только вода, температура будет ниже, чем в том, в котором находятся вода и металлическое тело. Следовательно, чтобы температура содержимого в обоих сосудах была одинаковой нужно воде передать большее количество теплоты, чем воде и металлическому телу. Таким образом, количество теплоты, необходимое для нагревания тела зависит от рода вещества, из которого это тело сделано.

5. Зависимость количества теплоты, необходимого для нагревания тела, от рода вещества характеризуется физической величиной, называемой удельной теплоёмкостью вещества.

Физическая величина, равная количеству теплоты, которое необходимо сообщить 1 кг вещества для нагревания его на 1 °С (или на 1 К), называется удельной теплоёмкостью вещества.

Такое же количество теплоты 1 кг вещества отдаёт при охлаждении на 1 °С.

Удельная теплоёмкость обозначается буквой ​\( c \)​. Единицей удельной теплоёмкости является 1 Дж/кг °С или 1 Дж/кг К.

Значения удельной теплоёмкости веществ определяют экспериментально. Жидкости имеют большую удельную теплоёмкость, чем металлы; самую большую удельную теплоёмкость имеет вода, очень маленькую удельную теплоёмкость имеет золото.

Удельная теплоёмкость свинца 140 Дж/кг °С. Это значит, что для нагревания 1 кг свинца на 1 °С необходимо затратить количество теплоты 140 Дж. Такое же количество теплоты выделится при остывании 1 кг воды на 1 °С.

Поскольку количество теплоты равно изменению внутренней энергии тела, то можно сказать, что удельная теплоёмкость показывает, на сколько изменяется внутренняя энергия 1 кг вещества при изменении его температуры на 1 °С. В частности, внутренняя энергия 1 кг свинца при его нагревании на 1 °С увеличивается на 140 Дж, а при охлаждении уменьшается на 140 Дж.

Количество теплоты ​\( Q \)​, необходимое для нагревания тела массой ​\( m \)​ от температуры \( (t_1\,^\circ C) \) до температуры \( (t_2\,^\circ C) \), равно произведению удельной теплоёмкости вещества, массы тела и разности конечной и начальной температур, т.е.

\[ Q=cm(t_2{}^\circ-t_1{}^\circ) \]

​По этой же формуле вычисляется и количество теплоты, которое тело отдаёт при охлаждении. Только в этом случае от начальной температуры следует отнять конечную, т.е. от большего значения температуры отнять меньшее.

6. Пример решения задачи. В стакан, содержащий 200 г воды при температуре 80 °С, налили 100 г воды при температуре 20 °С. После чего в сосуде установилась температура 60 °С. Какое количество теплоты получила холодная вода и отдала горячая вода?

При решении задачи необходимо выполнять следующую последовательность действий:

  1. записать кратко условие задачи;
  2. перевести значения величин в СИ;
  3. проанализировать задачу, установить, какие тела участвуют в теплообмене, какие тела отдают энергию, а какие получают;
  4. решить задачу в общем виде;
  5. выполнить вычисления;
  6. проанализировать полученный ответ.

1. Условие задачи.

Дано:
​\( m_1 \)​ = 200 г
​\( m_2 \)​ = 100 г
​\( t_1 \)​ = 80 °С
​\( t_2 \)​ = 20 °С
​\( t \)​ = 60 °С
______________

​\( Q_1 \)​ — ? ​\( Q_2 \)​ — ?
​\( c_1 \)​ = 4200 Дж/кг · °С

2. СИ: ​\( m_1 \)​ = 0,2 кг; ​\( m_2 \)​ = 0,1 кг.

3. Анализ задачи. В задаче описан процесс теплообмена между горячей и холодной водой. Горячая вода отдаёт количество теплоты ​\( Q_1 \)​ и охлаждается от температуры ​\( t_1 \)​ до температуры ​\( t \)​. Холодная вода получает количество теплоты ​\( Q_2 \)​ и нагревается от температуры ​\( t_2 \)​ до температуры ​\( t \)​.

4. Решение задачи в общем виде. Количество теплоты, отданное горячей водой, вычисляется по формуле: ​\( Q_1=c_1m_1(t_1-t) \)​.

Количество теплоты, полученное холодной водой, вычисляется по формуле: \( Q_2=c_2m_2(t-t_2) \).

5. Вычисления.
​\( Q_1 \)​ = 4200 Дж/кг · °С · 0,2 кг · 20 °С = 16800 Дж
\( Q_2 \) = 4200 Дж/кг · °С · 0,1 кг · 40 °С = 16800 Дж

6. В ответе получено, что количество теплоты, отданное горячей водой, равно количеству теплоты, полученному холодной водой. При этом рассматривалась идеализированная ситуация и не учитывалось, что некоторое количество теплоты пошло на нагревание стакана, в котором находилась вода, и окружающего воздуха. В действительности же количество теплоты, отданное горячей водой, больше, чем количество теплоты, полученное холодной водой.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Удельная теплоёмкость серебра 250 Дж/(кг · °С). Что это означает?

1) при остывании 1 кг серебра на 250 °С выделяется количество теплоты 1 Дж
2) при остывании 250 кг серебра на 1 °С выделяется количество теплоты 1 Дж
3) при остывании 250 кг серебра на 1 °С поглощается количество теплоты 1 Дж
4) при остывании 1 кг серебра на 1 °С выделяется количество теплоты 250 Дж

2. Удельная теплоёмкость цинка 400 Дж/(кг · °С). Это означает, что

1) при нагревании 1 кг цинка на 400 °С его внутренняя энергия увеличивается на 1 Дж
2) при нагревании 400 кг цинка на 1 °С его внутренняя энергия увеличивается на 1 Дж
3) для нагревания 400 кг цинка на 1 °С его необходимо затратить 1 Дж энергии
4) при нагревании 1 кг цинка на 1 °С его внутренняя энергия увеличивается на 400 Дж

3. При передаче твёрдому телу массой ​\( m \)​ количества теплоты ​\( Q \)​ температура тела повысилась на ​\( \Delta t^\circ \)​. Какое из приведённых ниже выражений определяет удельную теплоёмкость вещества этого тела?

1) ​\( \frac{m\Delta t^\circ}{Q} \)​
2) \( \frac{Q}{m\Delta t^\circ} \)​
3) \( \frac{Q}{\Delta t^\circ} \)​
4) \( Qm\Delta t^\circ \)​

4. На рисунке приведён график зависимости количества теплоты, необходимого для нагревания двух тел (1 и 2) одинаковой массы, от температуры. Сравните значения удельной теплоёмкости (​\( c_1 \)​ и ​\( c_2 \)​) веществ, из которых сделаны эти тела.

1) ​\( c_1=c_2 \)​
2) ​\( c_1>c_2 \)​
3) \( c_1<c_2 \)
4) ответ зависит от значения массы тел

5. На диаграмме представлены значения количества теплоты, переданного двум телам равной массы при изменении их температуры на одно и то же число градусов. Какое соотношение для удельных теплоёмкостей веществ, из которых изготовлены тела, является верным?

1) \( c_1=c_2 \)
2) \( c_1=3c_2 \)
3) \( c_2=3c_1 \)
4) \( c_2=2c_1 \)

6. На рисунке представлен график зависимости температуры твёрдого тела от отданного им количества теплоты. Масса тела 4 кг. Чему равна удельная теплоёмкость вещества этого тела?

1) 500 Дж/(кг · °С)
2) 250 Дж/(кг · °С)
3) 125 Дж/(кг · °С)
4) 100 Дж/(кг · °С)

7. При нагревании кристаллического вещества массой 100 г измеряли температуру вещества и количество теплоты, сообщённое веществу. Данные измерений представили в виде таблицы. Считая, что потерями энергии можно пренебречь, определите удельную теплоёмкость вещества в твёрдом состоянии.

1) 192 Дж/(кг · °С)
2) 240 Дж/(кг · °С)
3) 576 Дж/(кг · °С)
4) 480 Дж/(кг · °С)

8. Чтобы нагреть 192 г молибдена на 1 К, нужно передать ему количество теплоты 48 Дж. Чему равна удельная теплоёмкость этого вещества?

1) 250 Дж/(кг · К)
2) 24 Дж/(кг · К)
3) 4·10-3 Дж/(кг · К)
4) 0,92 Дж/(кг · К)

9. Какое количество теплоты необходимо для нагревания 100 г свинца от 27 до 47 °С?

1) 390 Дж
2) 26 кДж
3) 260 Дж
4) 390 кДж

10. На нагревание кирпича от 20 до 85 °С затрачено такое же количество теплоты, как для нагревания воды такой же массы на 13 °С. Удельная теплоёмкость кирпича равна

1) 840 Дж/(кг · К)
2) 21000 Дж/(кг · К)
3) 2100 Дж/(кг · К)
4) 1680 Дж/(кг · К)

11. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.

1) Количество теплоты, которое тело получает при повышении его температуры на некоторое число градусов, равно количеству теплоты, которое это тело отдаёт при понижении его температуры на такое же число градусов.
2) При охлаждении вещества его внутренняя энергия увеличивается.
3) Количество теплоты, которое вещество получает при нагревании, идёт главным образом на увеличение кинетической энергии его молекул.
4) Количество теплоты, которое вещество получает при нагревании, идёт главным образом на увеличение потенциальной энергии взаимодействия его молекул
5) Внутреннюю энергию тела можно изменить, только сообщив ему некоторое количество теплоты

12. В таблице представлены результаты измерений массы ​\( m \)​, изменения температуры ​\( \Delta t \)​ и количества теплоты ​\( Q \)​, выделяющегося при охлаждении цилиндров, изготовленных из меди или алюминия.

Какие утверждения соответствуют результатам проведённого эксперимента? Из предложенного перечня выберите два правильных. Укажите их номера. На основании проведенных измерений можно утверждать, что количество теплоты, выделяющееся при охлаждении,

1) зависит от вещества, из которого изготовлен цилиндр.
2) не зависит от вещества, из которого изготовлен цилиндр.
3) увеличивается при увеличении массы цилиндра.
4) увеличивается при увеличении разности температур.
5) удельная теплоёмкость алюминия в 4 раза больше, чем удельная теплоёмкость олова.

Часть 2

C1.Твёрдое тело массой 2 кг помещают в печь мощностью 2 кВт и начинают нагревать. На рисунке изображена зависимость температуры ​\( t \)​ этого тела от времени нагревания ​\( \tau \)​. Чему равна удельная теплоёмкость вещества?

1) 400 Дж/(кг · °С)
2) 200 Дж/(кг · °С)
3) 40 Дж/(кг · °С)
4) 20 Дж/(кг · °С)

Ответы

Количество теплоты. Удельная теплоёмкость

3 (60%) 14 votes

для чего она нужна и в чем ее смысл? :: SYL.ru

Физика и тепловые явления - это довольно обширный раздел, который основательно изучается в школьном курсе. Не последнее место в этой теории отводится удельным величинам. Первая из них — удельная теплоемкость.

Однако толкованию слова «удельный» обычно уделяется недостаточно внимания. Учащиеся просто запоминают его как данность. А что оно значит?

Если заглянуть в словарь Ожегова, то можно прочесть, что такая величина определяется как отношение. Причем оно может быть выполнено к массе, объему или энергии. Все эти величины обязательно полагается брать равными единице. Отношение к чему задается в удельной теплоемкости?

К произведению массы и температуры. Причем их значения обязательно должны быть равными единице. То есть в делителе будет стоять число 1, но его размерность будет сочетать килограмм и градус Цельсия. Это обязательно учитывается при формулировке определения удельной теплоемкости, которое дано немного ниже. Там же находится формула, из которой видно, что в знаменателе стоят именно эти две величины.

Что это такое?

Удельная теплоемкость вещества вводится в тот момент, когда рассматривается ситуация с его нагреванием. Без него невозможно узнать, какое количество теплоты (или энергии) потребуется затратить на этот процесс. А также вычислить ее значение при охлаждении тела. Кстати, эти два количества теплоты равны друг другу по модулю. Но имеют разные знаки. Так, в первом случае она положительная, потому что энергию нужно затратить и она передается телу. Вторая ситуация с охлаждением дает отрицательное число, потому что тепло выделяется, и внутренняя энергия тела уменьшается.

Обозначается эта физическая величина латинской буквой c. Определяется она как некоторое количество теплоты, необходимое для нагревания одного килограмма вещества на один градус. В курсе школьной физики в качестве этого градуса выступает тот, что берется по шкале Цельсия.

Как ее сосчитать?

Если требуется узнать, чему равна удельная теплоемкость, формула выглядит так:

с = Q / (m * (t2 – t1)), где Q — количество теплоты, m — масса вещества, t2 – температура, которую тело приобрело в результате теплообмена, t1 — начальная температура вещества. Это формула № 1.

Исходя из этой формулы, единица измерения этой величины в международной системе единиц (СИ) оказывается Дж/(кг*ºС).

Как найти другие величины из этого равенства?

Во-первых, количество теплоты. Формула будет выглядеть таким образом: Q = с * m * (t2 – t1). Только в нее необходимо подставлять величины в единицах, входящих в СИ. То есть масса в килограммах, температура — в градусах Цельсия. Это формула № 2.

Во-вторых, массу вещества, которое остывает или нагревается. Формула для нее будет такой: m = Q / (c * (t2 – t1)). Это формула под № 3.

В-третьих, изменение температуры Δt = t2 – t1 = (Q / c * m). Знак «Δ» читается как «дельта» и обозначает изменение величины, в данном случае температуры. Формула № 4.

В-четвертых, начальную и конечную температуры вещества. Формулы, справедливые для нагревания вещества, выглядят таким образом: t1 = t2 - (Q / c * m), t2 = t1 + (Q / c * m). Эти формулы имеют № 5 и 6. Если в задаче идет речь об охлаждении вещества, то формулы такие: t1 = t2 + (Q / c * m), t2 = t1 - (Q / c * m). Эти формулы имеют № 7 и 8.

Какие значения она может иметь?

Экспериментальным путем установлено, какие она имеет значения у каждого конкретного вещества. Поэтому создана специальная таблица удельной теплоемкости. Чаще всего в ней даны данные, которые справедливы при нормальных условиях.

ВеществоУдельная теплоемкость, Дж/(кг * ºС)
алюминий920
вода4200
графит750
железо460
золото130
латунь400
лед2100
медь400
олово230
свинец140
сталь500
стекло лабораторное840
чугун540

В чем заключается лабораторная работа по измерению удельной теплоемкости?

В школьном курсе физики ее определяют для твердого тела. Причем его теплоемкость высчитывается благодаря сравнению с той, которая известна. Проще всего это реализуется с водой.

В процессе выполнения работы требуется измерить начальные температуры воды и нагретого твердого тела. Потом опустить его в жидкость и дождаться теплового равновесия. Весь эксперимент проводится в калориметре, поэтому потерями энергии можно пренебречь.

Потом требуется записать формулу количества теплоты, которое получает вода при нагревании от твердого тела. Второе выражение описывает энергию, которую отдает тело при остывании. Эти два значения равны. Путем математических вычислений остается определить удельную теплоемкость вещества, из которого состоит твердое тело.

Чаще всего ее предлагается сравнить с табличными значениями, чтобы попытаться угадать, из какого вещества сделано изучаемое тело.

Задача № 1

Условие. Температура металла изменяется от 20 до 24 градусов Цельсия. При этом его внутренняя энергия увеличилась на 152 Дж. Чему равна удельная теплоемкость металла, если его масса равна 100 граммам?

Решение. Для нахождения ответа потребуется воспользоваться формулой, записанной под номером 1. Все величины, необходимые для расчетов, есть. Только сначала необходимо перевести массу в килограммы, иначе ответ получится неправильный. Потому что все величины должны быть такими, которые приняты в СИ.

В одном килограмме 1000 граммов. Значит, 100 граммов нужно разделить на 1000, получится 0,1 килограмма.

Подстановка всех величин дает такое выражение: с = 152 / (0,1 * (24 – 20)). Вычисления не представляют особой трудности. Результатом всех действий является число 380.

Ответ: с = 380 Дж/(кг * ºС).

Задача № 2

Условие. Определить конечную температуру, до которой остынет вода объемом 5 литров, если она была взята при 100 ºС и выделила в окружающую среду 1680 кДж тепла.

Решение. Начать стоит с того, что энергия дана в несистемной единице. Килоджоули нужно перевести в джоули: 1680 кДж = 1680000 Дж.

Для поиска ответа необходимо воспользоваться формулой под номером 8. Однако в ней фигурирует масса, а в задаче она неизвестна. Зато дан объем жидкости. Значит, можно воспользоваться формулой, известной как m = ρ * V. Плотность воды равна 1000 кг/ м3. Но здесь объем потребуется подставлять в кубических метрах. Чтобы перевести их из литров, необходимо разделить на 1000. Таким образом, объем воды равен 0,005 м3.

Подстановка значений в формулу массы дает такое выражение: 1000 * 0,005 = 5 кг. Удельную теплоемкость потребуется посмотреть в таблице. Теперь можно переходить к формуле 8: t2 = 100 + (1680000 / 4200 * 5).

Первым действием полагается выполнить умножение: 4200 * 5. Результат равен 21000. Второе — деление. 1680000 : 21000 = 80. Последнее — вычитание: 100 - 80 = 20.

Ответ. t2 = 20 ºС.

Задача № 3

Условие. Имеется химический стакан массой 100 г. В него налито 50 г воды. Начальная температура воды со стаканом равна 0 градусам Цельсия. Какое количество теплоты потребуется для того, чтобы довести воду до кипения?

Решение. Начать стоит с того, чтобы ввести подходящее обозначение. Пусть данные, относящиеся к стакану, будут иметь индекс 1, а к воде — индекс 2. В таблице необходимо найти удельные теплоемкости. Химический стакан сделан из лабораторного стекла, поэтому его значение с1 = 840 Дж/ (кг * ºС). Данные для воды такие: с2 = 4200 Дж/ (кг * ºС).

Их массы даны в граммах. Требуется перевести их в килограммы. Массы этих веществ будут обозначены так: m1 = 0,1 кг, m2 = 0,05 кг.

Начальная температура дана: t1 = 0 ºС. О конечной известно, что она соответствует той, при которой вода кипит. Это t2 = 100 ºС.

Поскольку стакан нагревается вместе с водой, то искомое количество теплоты будет складываться из двух. Первой, которая требуется для нагревания стекла (Q1), и второй, идущей на нагревание воды (Q2). Для их выражения потребуется вторая формула. Ее необходимо записать два раза с разными индексами, а потом составить их сумму.

Получается, что Q = с1 * m1 * (t2 – t1) + с2 * m2 * (t2 – t1). Общий множитель (t2 – t1) можно вынести за скобку, чтобы было удобнее считать. Тогда формула, которая потребуется для расчета количества теплоты, примет такой вид: Q = (с1 * m1 + с2 * m2) * (t2 – t1). Теперь можно подставить известные в задаче величины и сосчитать результат.

Q = (840 * 0,1 + 4200 * 0,05) * (100 – 0) = (84 + 210) * 100 = 294 * 100 = 29400 (Дж).

Ответ. Q = 29400 Дж = 29,4 кДж.

Удельная теплоемкость формула - обозначение и единицы измерения

Определение термина

Физическая величина, характеризующая, сколько тепловой энергии требуется на единицу вещества, и есть удельная теплоемкость, или энтальпия. Также она позволяет определить, сколько тепла необходимо отвести от единицы того или иного соединения, чтобы изменить на 1 градус его температуру. Неважно, по какой системе измеряется этот параметр:

  • Кельвина;
  • Цельсия;
  • Фаренгейта.

Единицей измерения удельной теплоемкости является джоуль, поделенный на килограмм и градус Кельвина. Есть и особая, внесистемная единица, представляющая собой показатель калорий, который имеет вид произведения килограммов и градусов Цельсия. Обозначается теплоемкость удельного типа посредством специальных индексов. Допустим, в ситуации, когда наблюдаются постоянные отметки давления, используется индекс p. Когда постоянство сохраняет объем, его место занимает буква v. Единица, в которой измеряется удельная теплоёмкость — килоджоуль.

Молярная теплоёмкость – отдельный показатель. Это количество тепловой энергии, которое показывает требующееся для нагрева 1 моль вещества на каждый градус. Во время плавления выделяется также определенный объем тепловой энергии. Теплопроводность — разновидность теплопередачи, когда энергия перемещается от нагретой области вещества к более холодной, посредством передвижения частиц. На уроках физики проводится объяснение физического смысла теплоёмкости. Ее размерность обозначена так:

Физическая величина может быть охарактеризована различными способами. В частности, допускается формулировка, согласно которой ее можно представить в виде комбинации теплоемкости вещества к его массе.

Теплоемкость, в свою очередь, это физическая величина. Она отображает объем тепла, который надо подвести либо отвести от вещества для изменения показателя его температуры. Если это объект, масса которого превышает 1 кг, определять этот показатель надо, как для единичного значения.

Примеры для тех или иных веществ

Путем экспериментов удалось выяснить, что показатель является различным для тех или иных веществ. Например, в отношении воды имеется показатель 4,187 кДж. Наибольшим он является у водорода. Для него установлено нормальное значение 14,300 кДж. Наименьшее оно у золота - 0,129 кДж.

Благодаря современным достижениям науки можно увеличить скорость обнаружения интересующих значений и свойств. Если раньше приходилось искать по справочнику соответствующую таблицу, то теперь на любом телефоне появилась опция для поиска через интернет. Наиболее примечательные вещества, теплоёмкость которых представляет интерес чаще всего это:

  • воздушные массы (идеальные и реальные газы) — 1,005 кДж;
  • металл алюминий - 0,930 кДж;
  • медь - 0,385 кДж.

Лабораторная работа

На школьных уроках определяется теплоемкость в отношении твердых веществ. Ее удаётся подсчитать при сравнении с тем показателем, который уже известен. Таблица удельной теплоемкости создана специально для удобства подсчетов.

Берут воду и твердый объект в нагретом состоянии, после чего производят замер температуры обоих. Отпускают твердое тело в жидкость и дожидаются момента теплового равновесия. Чтобы организовать такой эксперимент, необходим колориметр. Соответственно, имея такой прибор, можно пренебрегать небольшими потерями энергии.

В дальнейшем записывается формула объёма тепла, которая переходит в воду при взаимодействии с твёрдым объектом. Второе равенство отображает энергию, передаваемую твёрдым веществом при снижении температуры. Указанные показатели равны. После вычислений можно выявить теплоемкость компонентов, из которых состоит твердый объект. При этом обычно смотрят на данные таблицы, пытаясь таким образом определить, из какого вещества оно было сделано.

Первая задача

Допустим, металл меняет свои показатели температуры в пределах 20-24°. Внутренняя энергия этого вещества увеличивается одновременно на 152 кДж. Необходимо рассчитать, сколько составляет теплоёмкость металлического объекта при условии, что его масса составляет 100 г.

Для решения этой задачи надо воспользоваться специальной формулой. Достаточно подставить имеющиеся значения, но перед этим следует перевести массу в килограммы. Если этого не сделать, ответ будет неверным. В каждом килограмме насчитывается 1000 г. По этой причине 100 г необходимо поделить на 1000. Получается значение, равное 0,1 кг.

После произведенных подсчетов с использованием формулы получается такой результат:

Другие условия

Согласно 2 задаче, даётся энергия внесистемной единицы. Следует выявить температуру, при которой вода в количестве 5 л остынет, если её первоначально возьмут при температуре кипения. При этом она выделяет 1684 кДж тепла. Это количество переводится в джоули = 1680000 Дж.

Чтобы найти ответ, надо воспользоваться формулой, в которой используется масса. С другой стороны, в задаче она не приводится. Но несмотря на это, указан объем жидкости, соответственно, для нахождения критерия допустимо подставить уравнение с коэффициентами:

Плотность ее составляет 1000 кг на м3. Но надо подставлять объём в кубических метрах. Для перевода исходного значения надо поделить его на 1000. Получается число, равное 0,005 м3.

Производятся дальнейшие расчеты, и на выходе получается выражение:

В дальнейшем применяется формула:

Получается отметка, равная 20 ºС.

Другая задача: имеется стакан, в который налито 50 г воды. Сам он имеет массу 100 г. Температура жидкости первоначально имеет показатели 0°. Необходимо найти объем тепла, необходимого для доведения воды до кипения.

Для решения этой задачи надо ввести подходящие параметры. Можно дать условное обозначение характеристикам, которые касаются стакана, в виде единицы. Всё, что касается воды, обозначается индексом 2. Далее следует найти цифры, соответствующие теплоемкости, через таблицу. Если это тара, выполненная из лабораторного стекла, то у нее будут показатели с1 = 840 Дж/ (кг * ºС). Точный показатель для воды будет иметь вид:

Масса в этой задаче приводится в граммах. После перевода получаются показатели:

Начальная температура равна 0°. Необходимо найти параметры, соответствующие температуре кипения - 100°. Стакан нагревается одновременно с жидкостью, которая наполнена им. Поэтому начальное количество теплоты необходимо получить при складывании несколько показателей. Это параметр, получаемый при нагревании стекла, а второй показатель обнаруживается после нагрева воды. Составляется формула такого вида:

Сюда подставляются имеющееся значения, после чего она принимает следующий облик:

Те или иные материалы с одинаковой массой предполагают разные объемы тепла, необходимые для нагрева. Этот показатель обычно больше у металлов, нежели у древесины, например, алюминия или поверхности из штукатурки. То есть вид материала влияет на этот показатель в той же степени, что и масса. Чтобы нагреть бетон в объеме 1 кг требуется примерно 1000 Дж.

Показатели воздуха

Теплоемкость воздуха отличается, в зависимости от сопутствующих условий. Её величина влияет на объём тепла, который требуется для подведения при постоянном давлении к 1 кг воздуха. При этом задается цель — увеличить температуру на градус. Если газ имеет температуру 20°С, то необходимо подведение 1005 джоулей тепла, чтобы нагреть 1 кг этого вещества.

По мере роста температуры повышается удельная теплоемкость. Но здесь имеет место нелинейная зависимости. Средняя теплоемкость почти не меняется, если не отмечается воздействия экстремального холода и других критичных явлений. Но от температуры окружающего пространства зависит удельная теплоемкость вещества не так явно, если сравнивать с вязкостью. Иногда такие связи изображают в виде графиков для лучшего понимания.

При нагреве газов теплоемкость способна возрастать в 1,2 раз.

У влажного воздуха такой параметр является более высоким, нежели у сухого. Вода по сравнению с ним имеет большие значения теплоемкости. Соответственно, когда капли воды висят в воздухе, его теплоемкость становится больше.

Что такое удельная теплоемкость? (с рисунками)

Удельная теплоемкость - это измерение, используемое в термодинамике и калориметрии, которое устанавливает количество тепловой энергии, необходимой для повышения температуры данной массы определенного вещества на определенное количество. Хотя иногда используются разные шкалы измерения, этот термин обычно конкретно относится к количеству, необходимому для поднятия 1 грамма какого-либо вещества на 1,8 ° F (1 ° Цельсия). Отсюда следует, что если к веществу добавить вдвое больше энергии, его температура должна увеличиться вдвое.Удельная теплоемкость обычно выражается в джоулях, единицах измерения, обычно используемых в химии и физике для описания энергии. Это важный фактор в науке, технике и понимании климата Земли.

Зная удельную теплоемкость вещества, предприятия могут рассчитать, сколько энергии им потребуется при эксплуатации доменной печи или крекинговой башни.
Нагрев и температура

Тепловая энергия и температура - это два разных понятия, и важно понимать разницу.Первый - это величина в термодинамике, которая описывает количество изменений, которые система может вызвать в окружающей среде. Передача этой энергии объекту заставляет его молекулы двигаться быстрее; это увеличение кинетической энергии измеряется или ощущается как повышение температуры.

Удельная теплоемкость - это количество энергии, необходимое для повышения температуры данной массы определенного вещества.
Удельная теплоемкость и теплоемкость

Эти два свойства часто путают. Первый - это количество джоулей, необходимое для повышения температуры данной массы вещества на некоторую единицу.Он всегда дается «на единицу массы», например 0,45 Дж / г ° C, что представляет собой удельную теплоемкость железа или количество джоулей тепловой энергии для повышения температуры одного грамма железа на один градус Цельсия. Следовательно, это значение не зависит от количества железа.

Теплоемкость - иногда называемая «тепловой массой» - это количество джоулей, необходимое для повышения температуры определенной массы материала на 1.8 ° F (1 ° Цельсия) - это просто удельная теплоемкость материала, умноженная на его массу. Он измеряется в джоулях на ° C. Теплоемкость железного предмета весом 100 г составит 0,45 х 100, что дает 45 Дж / ° C. Это свойство можно рассматривать как способность объекта накапливать тепло.

Удельная теплоемкость вещества более или менее верна в широком диапазоне температур, то есть энергия, необходимая для повышения уровня данного вещества на один градус, лишь незначительно отличается от своего начального значения.Однако это не применяется, когда вещество претерпевает изменение состояния. Например, если к некоторому количеству воды постоянно прикладывать тепло, это приведет к повышению температуры в соответствии с удельной теплоемкостью воды. Однако при достижении точки кипения дальнейшего повышения температуры не будет; вместо этого энергия пойдет на производство водяного пара. То же самое относится к твердым веществам при достижении точки плавления.

Устаревший показатель энергии - калория - основан на удельной теплоте воды.Одна калория - это количество энергии, необходимое для повышения температуры одного грамма воды на 1,8 ° F (1 ° C) при нормальном давлении воздуха. Это эквивалентно 4,184 джоуля. Для удельной теплоемкости воды могут быть даны несколько иные значения, поскольку она немного меняется в зависимости от температуры и давления.

Эффекты

Различные вещества могут иметь очень разную теплоемкость.Например, у металлов, как правило, очень низкие значения. Это означает, что они быстро нагреваются и быстро остывают; они также имеют тенденцию значительно расширяться по мере нагревания. Это имеет значение для проектирования и проектирования: часто необходимо делать поправку на расширение металлических частей в конструкциях и оборудовании.

Вода, напротив, имеет очень высокую удельную теплоемкость - в девять раз больше, чем у железа, и в 32 раза больше, чем у золота.Из-за молекулярной структуры воды требуется много энергии для повышения ее температуры даже на небольшое количество. Это также означает, что теплая вода долго остывает.

Это свойство необходимо для жизни на Земле, поскольку вода оказывает значительное стабилизирующее влияние на глобальный климат.Зимой океаны медленно остывают и выделяют в окружающую среду значительное количество тепла, что помогает поддерживать относительно стабильную глобальную температуру. И наоборот, летом требуется много тепла, чтобы значительно повысить температуру океана. Это оказывает сдерживающее влияние на климат. Внутренние континентальные районы, удаленные от океана, испытывают гораздо более высокие температуры, чем прибрежные районы.

Его молекулярная структура придает воде очень высокую удельную теплоемкость..

Удельная теплоемкость - Простая английская Википедия, бесплатная энциклопедия

Удельная теплоемкость ( с ) - это особый тип теплоемкости. Удельная теплоемкость - это термодинамическое свойство, которое устанавливает количество тепла, необходимое для повышения одной единицы массы вещества на один градус температуры. [1] Для веществ наблюдаются различные диапазоны значений удельной теплоемкости в зависимости от степени поглощения ими тепла. Термин теплоемкость может вводить в заблуждение, поскольку тепло q - это термин, используемый для добавления или отвода энергии через барьер для вещества или системы в результате повышения или понижения температуры соответственно.Температурные изменения - это на самом деле изменения энергии. Следовательно, удельная теплоемкость и другие формы теплоемкости являются более точными показателями способности вещества поглощать энергию при повышении температуры вещества.

Единицы очень важны для выражения любого термодинамического свойства; то же самое верно и для теплоемкости. Энергия в виде тепла выражается в джоулях (Дж) или килоджоулях (кДж), которые являются наиболее распространенными единицами, связанными с энергией. Одна единица массы измеряется в граммах или килограммах с учетом удельной теплоемкости.Один грамм - это стандартная форма, используемая в таблицах значений удельной теплоемкости, но иногда встречаются ссылки с использованием одного килограмма. Один градус температуры измеряется по шкале Цельсия или Кельвина, но обычно по Цельсию. Наиболее часто встречающимися единицами измерения удельной теплоемкости являются Дж / (г • ° C).

Факторы, определяющие удельную теплоемкость [изменить | изменить источник]

Температура и давление [изменить | изменить источник]

Два фактора, которые изменяют удельную теплоемкость материала, - это давление и температура.Удельная теплоемкость определяется при стандартном постоянном давлении (обычно атмосферном) для материалов и обычно указывается при 25 ° C (298,15 K). Используется стандартная температура, поскольку удельная теплоемкость зависит от температуры и может изменяться при различных значениях температуры. [2] Удельная теплоемкость называется интенсивным свойством (en: Интенсивные и экстенсивные свойства интенсивным свойством). Пока температура и давление находятся на стандартных эталонных значениях и не происходит фазового перехода, значение удельной теплоемкости любого материала остается неизменным независимо от массы присутствующего материала. [1]

Энергетические степени свободы [изменить | изменить источник]

Значительный фактор в величине теплоемкости материала лежит на молекулярном уровне в энергетической области: степени свободы (физика и химия), степени свободы, доступные для материала в фазе (твердое тело, жидкость или газ), в которой нашлось. Энергетические степени свободы бывают четырех типов: поступательные, вращательные, вибрационные и электронные. Для достижения каждой степени свободы требуется минимальное количество энергии.Следовательно, количество энергии, которое может храниться в веществе, зависит от типа и количества энергетических степеней свободы, которые вносят вклад в вещество при данной температуре. [2] Жидкости обычно имеют больше низкоэнергетических режимов и больше энергетических степеней свободы, чем твердые тела и большинство газов. Этот более широкий диапазон возможностей в пределах степеней свободы обычно создает большие удельные теплоемкости для жидких веществ, чем для твердых веществ или газов. Эту тенденцию можно увидеть в en: Теплоемкость # Таблица удельных теплоемкостей Таблица удельных теплоемкостей и сравнение жидкой воды с твердой водой (лед), медью, оловом, кислородом и графитом.

Удельная теплоемкость используется для расчета количества тепла, поглощенного при добавлении энергии к материалу или веществу за счет повышения температуры в определенном диапазоне. Расчет количества тепла или энергии, добавляемой к материалу, является относительно простым процессом, если записаны начальная и конечная температуры материала, указана масса материала и известна удельная теплоемкость. Удельная теплоемкость, масса материала и шкала температуры должны быть в одних и тех же единицах, чтобы точно выполнить расчет тепла.

Уравнение для расчета тепла ( q ) выглядит следующим образом:

Q = с × м × Δ T

В уравнении с - удельная теплоемкость в (Дж / г • ° C). м - масса вещества в граммах. Δ T относится к изменению температуры (° C), наблюдаемому в веществе. Согласно принятому соглашению начальная температура материала вычитается из конечной температуры после нагревания, так что Δ T равно T Final -T Initial в уравнении.Подстановка всех значений в уравнение и умножение на них отменяет единицы массы и температуры, оставляя соответствующие единицы джоулей для тепла. Подобные расчеты полезны в en: Калориметрия калориметрия

  1. 1,0 1,1 Ebbing, Darrell D .; Гаммон, Стивен Д. Общая химия. Бельмонт: Брукс / Коул, 2013. Печать. п. 242.
  2. 2,0 2,1 Engel, Thomas .; Рид, Филипп. Физическая химия. Бостон: Пирсон, 2013.Распечатать. С. 25-27.
.

Что такое удельная теплоемкость воды? Как это особенное?

Если вы когда-нибудь гуляли по пляжу в солнечный день и окунали пальцы ног в воду, чтобы охладить их после горячего песка, вы воспользовались удельной теплотой воды.

Как бы это ни звучало, удельная теплоемкость не относится к точной температуре чего-либо. Это более широкая научная концепция, связанная с энергией, необходимой для нагрева вещества. Как вы могли заметить из примера, не все вещества нагреваются с одинаковой скоростью - отсюда разные температуры песка и воды.

Удельная теплоемкость воды - одна из самых интересных ее характеристик. В этой статье мы расскажем, что такое удельная теплоемкость, какое уравнение вы используете для определения теплоемкости и почему у воды такая высокая теплоемкость.

.

Удельная теплоемкость - химия | Сократик

Химия
Наука
  • Анатомия и физиология
  • Астрономия
  • Астрофизика
  • Биология
  • Химия
  • наука о планете Земля
  • Наука об окружающей среде
  • Органическая химия
  • Физика
Математика
  • Алгебра
  • Исчисление
  • Геометрия
.

В чем измеряется удельная теплоемкость?

Химия
Наука
  • Анатомия и физиология
  • Астрономия
  • Астрофизика
  • Биология
  • Химия
  • наука о планете Земля
  • Наука об окружающей среде
  • Органическая химия
  • Физика
Математика
  • Алгебра
  • Исчисление
  • Геометрия
  • Предалгебра
  • Precalculus
  • Статистика
  • Тригонометрия
Гуманитарные науки
  • Английская грамматика
.

Коэффициенты теплоемкости газов

Внутренняя энергия

Для идеального газа внутренняя энергия - u - является функцией температуры. Изменение внутренней энергии можно выразить как

du = c v dT (1)

, где

du = изменение внутренней энергии (кДж / кг )

c v = удельная теплоемкость газа в процессе с постоянным объемом (кДж / кг · K)

dT = изменение температуры (K)

Удельная теплоемкость c v изменяется в зависимости от температуры, но в пределах умеренных температурных изменений удельная теплоемкость - c v - может считаться постоянной.

Энтальпия

Для идеального газа энтальпия - ч - является функцией температуры. Изменение энтальпии может быть выражено как

dh = c p dT (2)

, где

dh = изменение энтальпии (кДж / кг)

p = удельная теплоемкость газа в процессе постоянного давления (кДж / кг · K)

Удельная теплоемкость c p может считаться постоянной при умеренных изменениях температуры.

Энтальпия в жидкости определяется как:

h = u + p / ρ (3)

где

h = энтальпия (кДж / кг)

u = внутренняя энергия (кДж / кг)

p = абсолютное давление (Па)

ρ = плотность (кг / м 3 )

Объединение (3) и закона идеального газа:

h = u + RT (4)

, где

R = индивидуальная газовая постоянная (кДж / кгК)

Изменение энтальпии можно выразить дифференцированием (4) :

dh = du + R dT (5) 90 007

Разделение (5) на dT :

(dh / dT) - (du / dT) = R (6)

Изменение (6) на (1 ) и (2) :

c p - c v = R (7)

Разница c p - c v постоянна для идеальный газ.

Коэффициент удельной теплоемкости

Коэффициент удельной теплоемкости можно выразить как:

k = c p / c v (8)

, где

k = коэффициент удельной теплоемкости

коэффициент удельной теплоемкости для некоторых газов:

902
газ коэффициент удельной теплоемкости
- k -
Acelen30
Воздух, стандартный 1,40
Аммиак 1,32
Аргон 1,66
Бензол 4 1,12 902 902 бутан -бутан 1,19
Двуокись углерода 1,28
Дисульфид углерода 1,21
Окись углерода 1.40
Хлор 1,33
Этан 1,18
Этиловый спирт 1,13
Этилхлорид 4 1,19 902 902 902 902 902 902 4 1,19 902 902 902 902 902 1,66
N-гептан 1,05
Гексан 1,06
Соляная кислота 1.41
Водород 1,41
Хлористый водород 1,41
Сероводород 1,32
Метан 902 902 902 902 902 902 1,08
Метилхлорид 1,20
Природный газ (метан) 1,32
Оксид азота 1.40
Азот 1,40
Закись азота 1,31
N-октан 1,05
Кислород 902 902 902 1,40 902 Изопентан 1,08
Пропан 1,13
R-11 1,14
R-12 1.14
R-22 1,18
R-114 1,09
R-123 1,10
R-134a 1,20 1,33
Диоксид серы 1,26
Toulene 1,09

Коэффициент удельной теплоемкости безразмерен, и его значение одинаково в системе единиц СИ и британской системе мер.

.

Смотрите также