Изделия из композиционных материалов


🚩Изделия из композитных материалов (12.2020)

Содержание:

Современные технологии позволяют применять композитные материалы в разных сферах деятельности человека. Наука не стоит на месте, идет создание новых видов этого материала В его основе лежат два или более компонента, которые сильно отличаются как химическими, так и физическими свойствами. При их соединении получается новый, уникальный материал, с разными свойствами, которые зависят от его составляющих.

Наиболее известными являются пластики, армированные разными видами волокон (длинноволокнистые и коротковолокнистые). Завод Пластмассы в городе Москва, реализует изделия из композитного материала. За справками обращаться по телефону

Изделия из композитных материалов

Композитный материал прочно вошел в нашу жизнь. Многие отрасли производства трудно себе представить без этого материала. Кроме того, ученые работают над созданием новых видов материала. Причины его популярности разные:

  • небольшой вес;
  • прочный;
  • не поддается коррозии;
  • легко обрабатывается;
  • долговечный;
  • невысокая себестоимость;
  • возможность повторной переработки;

Разный состав матрицы и вяжущего вещества, дает возможность разнообразить и материал, использовать его в разных сферах деятельности. Материал вдохновляет дизайнеров создавать креативные изделия, которые украшают наш быт, используется в машиностроении, космонавтике.

Благодаря прочности, легкости, антикоррозийным качествам его используют для строительства водного транспорта – лодок, яхт, кораблей. Материал принимает любую форму, что позволяет создавать любые детали, комплектующие строительства необычных конструкций.

Материал широко используется в архитектурном дизайне. Элементы декора из стеклопластика украшают интерьер. Из него делают различные композиции в садово-парковых инсталляциях, в декоре фасадов зданий.

Сегодня строительство не обходится без изделий из стекловолокна. Это пруток для обустройства фундамента. Сетка для укрепления стен, плиты перекрытий.

Мебель для кафе, столовых, офисных помещений. Для строительства детских площадок и развлекательных центров, используют этот легкий, прочный и красочный материал.

Большая цветовая гамма и стойкие краски, расширяют сферу использования стекловолокна. Отделка внутренних помещений панелями из стекловолокна, очень популярна. На них можно нанести любой узор, разнообразную фактуру и цвет. Особенно модными стали 3Д панели.

Производство изделий из композитных материалов

Производство изделий из композитных материалов производится разными методами. Для его реализации требуется специальное оборудование. Технология создания заключается в процессе соединения связующего наполнителя и основы. Чаще всего, при создании изделия сложной конфигурации используется технология, суть которой, заключается в сухой выкладке «основы», которая пропитывается связующим составом. Это может быть формовка, обмотка, вакуумная пропитка. Эти операции могут проводиться вручную или автоматически. Существуют такие методы:

  • на основу накладывается холодный пресс, затем происходит спекание изделия;
  • на волокна наносятся электрохимическое покрытие, затем все прессуется;
  • волокна пропитываются матричным материалом;
  • использование пресс-формы для намотки лент и матрицы;
  • плазменное напыление матрицы с последующим обжатием;
  • диффузная сварка многослойных лент;
  • одновременная прокатка компонентов.

Метод использования, зависит от назначения изделия, его физических и химических качеств. Чтобы изделие получилось качественным, следует правильно подобрать материал и способ его производства. Для правильных

Некоторые методы изготовления продуктов из композитов / Хабр

Прошлый свой пост я посвятил истории композитных материалов. Я продолжаю занимать свой досуг этой теме и сегодня хочу рассказать немного о терминах и технологиях прототипирования с использованием полимерных композитов. Если вам нечем заняться длинными зимними вечерами, то вы всегда можете смастерить из углепластиковой ткани сноуборд, корпус для мотоцикла или чехол на смартфон. Конечно, процесс может в итоге выйти дороже, нежели покупка готового продукта, но интересно что-то мастерить своими руками.

Под катом — обзор методов изготовления изделий из композитных материалов. Буду вам благодарен, если в комментариях вы меня дополните, чтобы в результате получился более полный пост.


Композиционный материал создается минимум из двух компонентов с четкой границей между ними. Есть слоистые композитные материалы — например, фанера. Во всех же других композитах можно разделить компоненты на матрицу, или связующее, и армирующие элементы — наполнители. Композиты обычно разделают по виду армирующего наполнителя или по материалу матрицы. Подробнее об использовании композитов вы можете прочитать в посте История композиционных материалов, а эта публикация посвящена методам изготовления продуктов из композитов.

Ручное формование

В случае с изготовлением изделий единичными экземплярами наиболее распространенным методом является ручное формование. На подготовленную матрицу наносится гелькоут – материал для получения хорошей отделки на внешней части армированного материала, позволяющий также подобрать цвет для изделия. Затем в матрицу укладывается наполнитель – например, стеклоткань – и пропитывается связующим. Удаляем пузырьки воздуха, ждем, пока все остынет, и дорабатываем напильником – обрезаем, высверливаем и так далее.

Этот метод широко используется для создания деталей корпуса автомобилей, мотоциклов и мопедов. То есть для тюнинга в тех случаях, когда он не ограничивается наклейкой пленки «под карбон».

Напыление

Напыление не требует раскроя стекломатериала, но взамен нужно использование специального оборудования. Данный метод часто используется для работы с крупными объектами, такими как корпусы лодок, автотранспорт и так далее. Точно так же, как и в случае с ручным формованием, сначала анносится гелькоут, затем стекломатериал.

RTM (инжекция)

При методе инжекции полиэфирной смолы в закрытую форму используется оснастка из матрицы и ответной формы – пуансона. Стекломатериал укладывается между матрицей и ответной формой, затем в форму под давлением вливается отвердитель – полиэфирная смола. И, конечно, доработка напильником после отверждения – по вкусу.

Вакуумная инфузия

Для метода вакуумной инфузии необходим пакет, в котором с помощью насоса создается вакуум. В самом пакете располагается армирующий материал, поры которого после откачки воздуха заполняются жидким связующим.

Пример метода — для изготовления скейтборда.

Намотка

Метод намотки композитов позволяет сделать сверхлегкие баллоны для сжатого газа, для чего используют РЕТ-лейнер, подкачанный до 2-5 атмосфер, а также композитные трубы, используемые в нефтедобывающей отрасли, химической промышленности и в коммунальном хозяйстве. Из названия легко понять, что стеклоткань наматывают на подвижный или неподвижный объект.

На видео — процесс намотки стеклоткани на баллон.

Пултрузия

Пультрузия – это “протяжка”. При этом методе происходит непрерывный процесс протягивания композиционного материала сквозь тянущую машину. Скорость процесса составляет до 6 метров в минуту. Волокна пропускаются через полимерную ванну, где пропитываются связующим, после чего проходят сквозь преформовочное устройство, получая окончательную форму. Затем в пресс-форме материал нагревается, и на выходе мы получаем окончательный затвердевший продукт.

Процесс производства шпунтовых свай методом пултрузии.

Прямое прессование

Изделия из термопластов изготавливают в пресс-формах под давлением. Для этого используют высокотемпературные гидравлические прессы с усилием от 12 до 100 тонн и максимальной температурой около 650 градусов. Таким способом делают, например, пластиковые ведра.

Автоклавное формование

Автоклав необходим для проведения процессов при нагреве и под давлением выше атмосферного с целью ускорить реакцию и увеличить выход продукта. Внутрь автоклава помещаются композитные материалы на специальных формах.

Продукты из композитов

Композитные материалы широко используются в авиастроении. Например, Solar Impulse построен из них.

Автопром.

Протезы и ортезы.

Спорт.

Если у вас появились дополнения, то обязательно напишите о них в комментариях. Спасибо.

ЭЗКМ / Технология производства изделий из композитов

 


 

 1. Контактное формование

         

Во время такого метода используются заранее подготовленные наполнители. Благодаря такому методу гарантируется высокая однородность продукции на прочность, и контролируются показатели. Однако качество получаемого изделия зависит в высокой степени от мастерства и опыта рабочих.

  Производство изделий из стеклопластика ручным формованием разделено на несколько этапов. Первый этап называется подготовительным, в процессе которого отчищается поверхность матрицы ожидаемого изделия, затем обезжиривается и в конце наносится слой разделительного воска. В конце первого этапа матрица покрывается защитно-декоративным слоем – гелькоутом. Благодаря такому слою формируется наружная поверхность будущего изделия, задается цвет и обеспечивается защита от действия вредных факторов, таких как вода, ультрафиолет и химические реагенты. В основном используют негативные матрицы для производства готового изделия. После того, как высохнет специальный слой гелькоут, можно перейти к последующему этапу, который называется формовка. В процессе этого этапа в матрицу закладывается изначально раскроенный стекломатериал, также можно использовать другой тип наполнителя. Далее идет процесс формирования «скелета» ожидаемого изделия. Затем смола с катализатором, предварительно смешанная, наносится на подготовленный стекломатериал. Смолу необходимо равномерно распределить благодаря кисточкам и мягким валикам по матрице. Последний этап можно назвать прикаткой. Его используют, чтобы удалить из еще не отверделого ламината пузырьки воздуха. Если их не удалить, то это скажется на качестве готового изделия, поэтому ламинат необходимо прикатать жёстким валиком. Когда готовое изделие застыло, его достают из формы и придают механообработке, включающую в себя высверливание отверстий, обрезку излишков стеклопластика по краям и др.

 Преимущества такого метода:

  • существует реальная возможность получить продукт сложной формы и немалого размера с минимальными вложениями;
  • конструкция изделия поддается легкому изменению, поскольку в изделие вводятся закладные детали и арматура, а цена оснастки и требуемого оборудования достаточно низкая;
  • чтобы изготовить матрицу используется любой материал, который способен сохранить свои пропорции и форму.

 Недостатки такого метода:

  • существенные затраты ручного труда;
  • производительность достаточно низкая;
  • качество изделия будет зависеть от квалификации формовщика;
  • этот метод подойдет для выпуска мелкосерийной продукции.

2. Напыление.

         

 

 Для мелкого и среднесерийного производства подойдет именно такой метод. Метод напыления имеет множество достоинств по сравнению с контактным формованием, даже несмотря на то, что предстоят определенные затраты на покупку оборудования для этого метода.

  Специальная установка позволяет нанести защитное покрытие и пластик. Благодаря чему не понадобится предварительный раскрой материала и приготовление связующего вещества, вследствие чего резко сокращается часть ручного труда. Специальные установки автоматически производят жёсткий отсчет доз смолы и отвердителя, также они осуществляют рубку ровинга на части необходимых размеров (0,8 - 5 см). После процесса рубки части нити должны попасть в струю связующего и пропитаться во время переноса на матрицу. За счет ручного труда осуществляется уплотнительный процесс для стеклопластика в матрице с помощью прикаточного валика. 

Ряд преимуществ при производстве стеклопластика методом напыления:

 

  • происходит экономия времени и полезных площадей за счет того, что не надо раскраивать материал и подготавливать связующее вещество;
  • можно уменьшить количество производственных площадей за счет снижения числа специально подготовленных мест для формовки;
  • скорость формования изделия увеличивается;
  • контроль над качеством продукции упрощается;
  • фонд заработной платы существенно экономится;
  • за счет того, что ровинг – относительно недорогой материал, то существенно понижается стоимость полученного изделия.

 Когда связующее вещество готовится небольшим количеством, то при ручном формовании на инструментах и стенках тары остается до 5% связующего вещества, что довольно неэкономично. Известно, что от мастерства и опыта оператора установки будет зависеть качество полученного продукта. Этот метод использует ту же оснастку, что и во время ручной формовки.

 

3. Пултрузия.


 Технология пултрузии основывается на производстве непрерывным способом профильных изделий из волокнистых пластиков одноосно-ориентированных. Профильное изделие с неизменным поперечным сечением из подходящего материала как раз и можно получить методом пултрузии.

 Благодаря специальной пултрузионной машине происходит изготовление профиля из стеклопластика. Такая машина состоит из секции для подачи армирующих материалов, фильера, из секции для пропитки, тянущего агрегата, блока управления нагревательными элементами и из секции для обрезки. Паковку ориентированного волокна лучше укреплять в сухом состоянии и пропитывать полимерной композицией, прокачиваемой через сухую паковку. Благодаря такой технологии в материал не попадет воздух. Излишки смолы стекут обратно в поддон и поступят на рециркуляцию. Ровинг, который используется, как армирующий материал сматывается с бобин в сухом состоянии и собирается в пучок специальным способом. Затем материал поступает в устройство пропитки – это специальная ванна со смолой, где полностью смачивается полиэфирным, эпоксидным или другим связующим. Затем уже пропитанный материал отправляется в нагретую фильеру, задачей которой является сформировать конфигурацию профиля. Затем композиции затвердевает при указанном температурном режиме. В итоге получился профиль из стеклопластика, конфигурация которого повторяет форму фильеры.

 Доказано, что изделия, полученные путем пултрузации, по свойствам превосходят детали, выполненные классическими методами формования. Увеличение стоимости такого метода обуславливается рядом преимуществ, которые характерны для этого процесса. К преимуществам можно отнести строгость контроля натяжения и направленность волокна, уменьшение количества пор и удержание неизменного содержания волокна в композите. Очевидно, что даже свойство межслоевого сдвига однозначно улучшается. На данный момент разработано несколько вариантов главного процесса пултрузии, которые интересуют многих и много значат для промышленности. Их преимуществами являются хорошие электрические, физические, химические и тепловые свойства, высокая производительность и отличный допуск по размерам. Для изготовления постоянных пластинчатых и листовых полуфабрикатов как раз и предназначен один из таких методов пултрузии.

  Однако каждый метод имеет свои недостатки. Для этого метода характерен такой недостаток, как скорость процесса, которая будет зависеть от температуры и скорости затвердевания связующего. Обычно она невелика для низкотеплостойких полиэфирных смол. Ещё одним недостатком является то, что тяжело предоставить постоянное сечение изделия по длине, за исключением изделий с не особо сложной формой сечения – квадратной, круглой, двутавровой и других. Чтобы получить изделие необходимо использовать только нити или жгуты. Однако за последнее время эти недостатки метода получения профильных изделий помаленьку устранились и применение этого процесса заметно расширилось. Композиция, которая основывается на поливиниловых эфирах и эпоксидных смолах используются в качестве полимерных матриц. Применение таких полимерных матриц на основе полисульфона, полиэфирсульфона и пластифицированного полиимида дает возможность достигнуть скорости формования стержней диаметром около пяти мм со скоростью порядка сто два м/мин.

  Чтобы получить сложные армированные профильные изделия, необходимо воспользоваться методом протяжки слоистых материалов, которые состоят из волокнистых матов или тканей. На текущий момент разработаны методы получения трубчатых изделий, которые сочетают в себе намотку спирального слоя и протяжку. Лопасти ветряных двигателей, которые имеют сложный профиль поперечного сечения, можно привести в качестве примера использования материалов, имеющие сложную схему армирования. Уже разработана оснастка для формования полуфабрикатов для листовых автомобильных рессор, которые имеют криволинейную поверхность и непостоянное поперечное сечение.

 

4. Намотка.

 Одним из самых многообещающих методов формования изделий из стеклопластика выступает метод намотки волокном, за счет того, что он создает требуемую структуру наполнителя в фабрикатах в зависимости от их формы и особенностей эксплуатации. Благодаря использованию жгутов, лент, нитей в качестве наполнителей позволяет обеспечить максимальную прочность изделий. Тем более, что такие наполнители являются наиболее дешевыми.

 Процесс намотки волокном можно назвать относительно несложным методом, в котором на вращающуюся оправку наматывается армирующий материал в виде постоянного ровинга (жгута) или нити (пряжи). Специальные механизмы следят за углом намотки и нахождением армирующего материала. Эти устройства передвигаются со скоростью, совпадающей с вращением оправки. Материал обертывается вокруг оправки в виде полос, соприкасающихся друг с другом, либо по какому-то специальному рисунку до полного перекрытия оправочной поверхности. Идущие друг за другом слои, могут наноситься под одним углом или под разными углами намотки, пока не наберется требуемая толщина. Угол намотки меняется от очень малого, который имеет название продольного, до большого – окружного. Такое расположение подразумевает 900 относительно оси оправки, захватывая все углы спирали этого интервала.

  Термореактивная смола служит связующим веществом для армирующего материала. В процессе мокрой намотки смола наносится непосредственно во время самой намотки. Процесс сухой намотки основан на применении ровинга, который предварительно пропитывается смолой в В-стадии. Затвердение осуществляется при увеличенной температуре без лишнего давления. Завершающая стадия процесса основывается на взятии изделия с оправки. По необходимости можно провести отделочные операции: обработку механическим путем или шлифовальный способ. Основной процесс намотки характеризуется множеством вариантов, которые различаются лишь характером намотки, а также особенностями конструкции, сочетанием материалов и разновидностью оборудования. Конструкцию необходимо намотать как на поверхности вращения. Однако существует возможность отформовать изделия и другого вида, например, сжатием еще незатвердевшей намотанной детали внутри закрытой формы.

 Конструкция получается похожа на гладкий цилиндр, трубу или тюбинг, диаметр которых получается от нескольких сантиметров до нескольких десятков сантиметров. Намотка позволяет формовать изделия конической, сферической и геодезической формы. Чтобы получить сосуды высокого давления и резервуары для хранения, в намотку необходимо ввести торцевую заглушку. Есть возможность сформовать изделия, которые будут работать в нестандартных условиях нагружения, например, наружное или внутреннее давление, нагрузки на сжатие или крутящий момент. Термопластичные трубы и сосуды из металла высокого давления укрепляются при намотке наружными бандажами. Полученным изделиям характерна высокая степень точности. Однако существует и другая сторона процесса намотки, для такого процесса характерны меньшие скорости производства. Плюсом является то, что для намотки сгодится абсолютно любой постоянно армирующий материал.

 Для процесса намотки можно использовать машины разных типов: от различных токарных станков и машин на основе цепного привода до более сложных компьютеризованных агрегатов, характеризующимися тремя или четырьмя осями движения. Применяются также машины, которые непрерывно производят трубы. Для удобства намотки больших резервуаров должно быть спроектировано портативное оборудование на месте установки.

Основные достоинства метода намотки:

  • доходный с точки зрения экономики метод укладки материала за счет быстроты процесса;
  • возможность регулировки соотношения смола/стекло;
  • малый собственный вес, но при этом высокая прочность;
  • данный метод не расположен к коррозии и гниению;
  • относительно недорогие материалы;
  • хорошая структура ламинатов, за счет того, что профили обладают направленными волокнами, и хорошее содержание стекломатериалов.

 

5. Прессование.

 Процесс прессования состоит в непосредственном придании нужной формы изделию под воздействием высокого давления, которое образуется в пресс-форме при температуре быстрого затвердения материала. Благодаря внешнему давлению в материале, который прессуется, происходит его уплотнение и частичная деструктуризация прежней структуры. Трение между соприкасающимися частичками материала, которое образуется во время уплотнения, вызывает появление тепловой энергии, которая однозначно приведет к плавлению связующего вещества. После того, как материал перейдет в вязкопластичное состояние, он растекается в пресс-форме под действием давления, образуя целостную и уплотненную структуру. Процесс затвердевания основан на протекании реакции сшивки макромолекул благодаря поликонденсации между свободными группами связующего вещества. Для реакции необходимо тепло, в процессе которого происходит выделение низкомолекулярных, летучих веществ таких как, метанол, вода, формальдегид, аммиак и др.

 Параметры для технологии прямого прессования:

  • температура заблаговременного подогрева;
  • давление прессования;
  • температура прессования;
  • временная выдержка под давлением;
  • параметры подпрессовок;

 Давление направленно действует на материал, находящийся в полости формы, при прямом прессовании, поэтому детали формы могут преждевременно износиться. В зависимости от типоразмеров изделия цикл прессования может составлять от 4 до 7 мин. Прямое прессование пластиков для армирования имеет две разновидности, которые зависят от того, как пропитывается волокнистый наполнитель:

  • Прессуются сухие, предварительно пропитанные холсты и ткани;
  • Прессуются с пропиткой именно в форме.

 Большей популярностью пользуется первый способ. Для выполнения изделий относительно простой формы применяется прямое прессование. Благодаря высоким требованиям, предъявляемых к качеству наружной поверхности детали, были созданы автоматические установки для дозировки компонентов при приготовлении заготовок из препрегов. Спроектированы специальные автоматические манипуляторы, которые загружают пакеты заготовок в многогнездные формы пресса. Поколение новых прессов высокой точности оснащены современными системами контроля, благодаря которым можно получить детали с высококачественной поверхностью, а их стоимость примерно одинакова со стальными деталями.

 

6. Технология SMC.

 Серьёзным препятствием для распространения композиционных материалов является плохое приспосабливание традиционных технологий их выпуска к потребностям современного крупносерийного производства, к тому же полностью автоматизированного. На сегодняшний день композитные детали все-таки остаются «штучным товаром». Дорогой труд опытного персонала вносит высокий вклад в долю стоимости этих материалов. Несмотря на это, за последние годы мы достигли значительного прогресса в подготовке автоматических методов производства композитов. SMC-технология стала одной из самых востребованных разработок.

 Конечные изделия по такой технологии подлежат двухстадийному процессу. Первая стадия технологии характеризуется тем, что производится препрег на автоматической конвейерной установке, а уже на второй стадии происходит переработка препрега в стальных пресс-формах в готовые детали. Опишем эти этапы подробнее. Ненасыщенная полиэфирная смола используется в качестве основы для связующего материала. К ее достоинствам относится низкая цена и короткое время отверждения. Армирующим компонентом выступает рубленое стекловолокно, которое хаотично распределяется в объёме листа. Долгое хранение в течение нескольких месяцев при комнатной температуре обеспечено системой отверждения смолы. Химические загустители увеличивают вязкость связующего после того как стекловолокно было пропитано на несколько порядков, благодаря чему улучшается технологичность препрега, а также увеличивается срок его хранения. Минеральные наполнители, которые вводятся в связующее в большом количестве, повышают огнестойкость готовых изделий и, а качество их поверхности заметно улучшается.

 Получившийся препрег, подлежит переработке в автоматическом процессе благодаря прессованию в обогреваемых стальных пресс-формах. Эти формы по конструкции похожи на литьевые формы для термопластов. Благодаря рецептуре связующего препрег твердеет при температуре 150 С и давлении 50-80 бар со скоростью ~30 сек/мм толщины. Очень низкая усадка при затвердении является важной особенностью технологии SMC. Благодаря высокому содержанию минерального наполнителя и специальных термопластичных добавок усадка получается величиной до 0,05%. У полученных изделий ударная вязкость составляет 50-100 кДж/м2, а разрушительная прочность на изгиб – 120-180 МПа. Экономически целесообразно использовать SMC технологию при получении высококачественных композитных изделий большими партиями от нескольких тысяч до сотен тысяч в месяц. На европейском рынке похожих материалов выпускается сотни тысяч в год. Электроэнергетическая, автомобильная и железнодорожная промышленности являются крупнейшими потребителями этих материалов.

 

7. Метод RTM (Resin Transfer Moulding).

 Метод RTM основывается на пропитке и формовании композитов под давлением, в процессе которого связующее вещество переходит в закрытую матрицу, в которой уже содержится наполнители или преформы. Различные ткани разнообразного переплетения могут выступать как армирующий материал, например, мультиаксиальный или эмульсионный материал, и порошковые стекломаты. Связующим веществом выступает смола, которая гелеобразуется 50–120 мин, имеющая низкую динамическую вязкость. ГОСТ 28593-90 определяет вязкость и время гелеобразования смолы.

 RTM-classic

 Такой метод отлично подойдет для стандартных объёмов 500 –10000 изделий в год. Конструкция матрицы состоит из композиционных или стальных форм, которые повторяют с двух сторон внешние обводы детали. Конструкции обладают высокотемпературными характеристиками, которые удерживаются точным совмещением закрытых стальных рам, которые поддерживаются в местах зажимов.

 RTM-Light

 Этот метод идеален для производства матриц 0,2м2 до 100м2. Конструкция матрицы состоит из композиционных или стальных форм. Контур матрица состоит из более легкой и гибкой конструкции. Половинки матрицы соединяются между собой под воздействием вакуума.

Преимущества технологии RTM:

  • автоматизированное производство, благодаря чему уменьшается случайный характер вмешательства человека;
  • происходит сокращение и контроль количества используемого сырья;
  • снижено влияние материла на экологию;
  • улучшены условия труда;
  • создаются относительно прочные изделия, за счет лучшей пропитки;
  • относительно дешевое оборудование.

 


 

 

НА ГЛАВНУЮ СТРАНИЦУ

🚩Производство из композита (12.2020)

Содержание:

Композит применяется для выпуска изделий различного назначения, начиная с промышленности и заканчивая сборкой бытовой техникой. Широкая сфера применения материала объясняется его составом, в который входят два и более компонента, обеспечивающих дополнительные свойства изделия. Полученный материал приобретает новые характеристики, связанные с твердостью, пластичностью, износостойкостью.

Композиты состоят из матрицы, имеющей пластичную структуру, и наполнителей, которые укрепляют материал и придают ему дополнительную прочность. Состав композита зависит от пропорций применяемых веществ, вспомогательных реагентов, которые используются для создания изделий с необходимым набором свойств.

Детали из композита

Пластичная матрица и армированный наполнитель, входящие в состав композита, позволяют создавать из этого материала различные детали. Полученные изделия обладают определенной прочностью и жесткостью. По легкости и механическим свойствам детали из композита превосходят некоторые сплавы и другие традиционные материалы. Созданные из таких изделий строительные конструкции, имеют массу значительно меньшую, чем металлические. Композитные детали широко применяются для строительства быстровозводимых жилых, общественных, производственных зданий и хозяйственных построек.

Кроме строительной отрасли, детали из композита применяются в изготовлении:

  • промышленных осевых вентиляторов, которые устанавливаются на аппараты воздушного охлаждения, для градирен и ветроэнергетических установок;
  • электротранспорта, в том числе общественного;
  • мелкосерийного и серийного автомобилестроения;
  • спецавтотранспорта, в том числе для водных и снегоходных моделей;
  • строительной техники, включая краны и транспорт для укладки дорожного покрытия;
  • малогабаритных лодок;
  • объектов социально-бытовой инфраструктуры, придомовых территорий;
  • архитектурного декора и конструкций;
  • мастер-моделей и оснасток.

Свойства композита позволяют также изготавливать детали различных форм и размеров по проектам, предоставленным заказчиками. Из этого материала возможно сделать уникальный элемент конструкции или механизма с определенными физико-техническими характеристиками.

Композитные материалы применяются в изготовлении деталей для химической промышленности, электроники, электроэнергетики, медицины, металлургии. В авиастроении композиты применяются для конструкции обшивки, закрылок, воздухозаборников и других частей воздушного судна. Внедрение композитов в строительство космических аппаратов позволило в целом снизить вес конструкции.

Для конструирования спортивной техники, железнодорожного транспорта, в судостроении, строительстве зданий и дорожного покрытия широко применяется угле-, стеклопластик, а также кевларовый пластик.

Производство из композита

При изготовлении детали из композита учитываются условия работы механизма или конструкции, в которой будет применяться изделие. При проектировании композитных частей оборудования учитывается степень нагрузки, которую будет испытывать запчасть. Поэтому композитный материал должен включать матрицу, обеспечивающую стойкость к механическим воздействиям, монолитность детали, и наполнитель, отвечающий за твердость, прочность и устойчивость изделия к деформации.

Производство из композита включает этап проектирования формы и размеров изделия, конструирование материала в соответствии с условиями эксплуатации будущей детали. Вид и структурные особенности композита определяются исходя из технических требований к изделию: температуры, воздействующей на деталь в механизме, нагрузки, которой она подвергается, веса самой детали.

Процесс проектирования изделий переходит в технологическое произво

Что такое композитные материалы

Как и из чего строят яхты, какие технологии используют, что такое композит, чем отличается эпоксидная смола от полиэфирной, и как в этом задействован карбон? Мы решили разом ответить на все вопросы о технологии производства и написали большой лонгрид о том, как строят суда из стеклопластика — какие бывают материалы и методы. А в конце статьи подробно рассказали, что из этого используем мы на верфи Pacifico.



Что такое композит

Композиты — группа материалов, состоящих из нескольких компонентов, один из которых выполняет армирующую функцию, а второй связующую.

Например, железобетон — это вид композита. В этом соединении железо выполняет армирующую функцию, а бетон — связующую. Композит, который используют в судостроении, называется стеклопластиком или углепластиком. Базово он состоит из стеклоткани или углеткани и смолы.

Особенность композитов, что готовый материал обладает гораздо большей прочностью и жесткостью, чем его ингредиенты по отдельности. А значит готовое изделие весит меньше. В судостроении важно сделать корпус максимально легким — чем он легче, тем более мореходная, быстрая и экономичная получается лодка. Поэтому композитные материалы как нельзя лучше подходят для этой задачи.

Из чего состоит композит

Композит, из которого строят суда, базово состоит из 4-х типов материалов:
  • связующее вещество (смола)
  • армирующее вещество (ткань)
  • средний слой (наполнитель для сэндвича: пена или сотовый материал)
  • поверхностный слой (краска/гелькоут)

Если объяснять упрощенно, то композит производят следующим образом — ткань пропитывается жидкой смолой с отвердителем, высыхает и отвердевает. Самые простые композитные конструкции состоят просто из нескольких слоев ткани и смолы. Например, так строят корпуса детских парусных яхт Оптимист.

Для более сложных и больших конструкций, например, прогулочных катеров, используют композитный сэндвич. В композитном сэндвиче появляется средний слой — пена. Она закладывается между двумя армирующими слоями ткани, все вместе пропитывается смолой и в результате получается монолитный материал обладающий еще большей поверхностной прочностью, но при этом все еще достаточно легкий.

Разберем отдельно каждый тип материалов.

Смола

Смола — связующую вещество, которое пропитывает все слои композита и превращает их в готовую монолитную деталь. В судостроении используется 3 типа смолы:
  • эпоксидная
  • эпоксивинилэфирная
  • полиэфирная

Эпоксидная смола — самая прочная и дорогая. За счет повышенной прочности для изготовления детали ее требуется меньше, чем полиэфирной смолы, а значит сама деталь получается легче. Не содержит ядовитого вещества — стирола. Корпус лодки из эпоксидной смолы может эксплуатироваться без ремонта до 30 лет подряд.

Эпоксивинилэфирная — это соединение на основе эпоксидной смолы. В отличие от эпоксидной смолы оно уже содержит стирол, но в меньших количествах, чем полиэфирная смола. По цене и прочности это промежуточный вариант между эпоксидной и полиэфирной смолой.

Полиэфирная — дешевая и наименее прочная, содержит стирол. Изделия из нее получается тяжелее и со временем начинают впитывать воду. Полиэфирная смола более хрупкая, поэтому корпуса из нее со временем нуждаются в ремонте. Корпус из полиэфирной смолы в среднем служит до 20 лет.

Ткань

Ткань в судостроении выполняет роль армирующего вещества — с помощью нее изделию задается форма, она берет на себя нагрузку на скручивание. Ткань дает конструкции прочность на растяжение или сжатие.

В судостроении используется три типа ткани:

  • стекломат
  • стеклоткань
  • углеткань

Стекломат — рубленные спресованные волокна стекловолокна. Стекломат максимально гибкий и подвижный, ему можно задать любую форму или изгиб. Но при этом это наименее прочный вид ткани, у него нет устойчивости к скручиванием и разрывам — если потянуть сухую ткань в разные стороны она просто расползется.

Стеклоткань — стекловолокна, которые сплетено таким образом, что у ткани есть конкретное направление. Виды плетения бывают разными и от них зависит под каким углом ткань абсолютно устойчива на растяжение. Грамотный проект яхты учитывает особенности направления ткани и четко регламентирует какой тип плетения надо использовать на конкретных участках конструкции. Благодаря сочетанию разных типов плетения получаются максимально прочные детали, устойчивые к любым видам нагрузок.

Углеткань — тоже самое, что стеклоткань, только из углеволокна. У нее тоже есть разные типы плетения и направления. Углеволокно примерно в 2 раза прочнее, чем стекловолокно — точное соотношение зависит от типа плетения. Но стоит в 20 раз дороже.

Если упрощенно, то благодаря повышенной прочности на одну и ту же деталь углеволокна уходит в 2 раза меньше, чем стекловолокна. В результате деталь из углеволокна получается примерно в 2 раза легче. Готовый материал изделия из углепластика называется карбон. Полностью из карбона строят самые дорогие и быстрые гоночные яхты в мире.

Средний слой

Средний слой нужен, чтобы добавить расстояния между несколькими армирующими слоями ткани, и тем самым повысить поверхностную плотность изделия. Дело в том, что сама по себе ткань дает нужную прочность только на скручивание или сжатие, но не дает необходимой поверхностной прочности — деталь получается слишком тонкой.

В теории, увеличить толщину и соответственно поверхностную прочность можно просто наложив больше слоев стеклоткани, но тогда мы получим слишком большой вес, и при этом избыточную прочность к скручивающим нагрузкам.

Поэтому, чтобы соблюсти баланс между весом, поверхностной прочностью и устойчивостью к скручиванию, используют принцип сэндвича и прокладывают армирующие слои легким наполнителем. Чаще всего в производстве используют следующие типы наполнителя:


ПХВ — пенополивинилхлорид. Очень легкое, но при этом достаточно прочное соединение. В цифрах плотность этого материала — от 80 до 120 кг на 1 кубический метр. Еще один важный фактор — эта пена не впитывает в себя смолу, а значит не набирает лишний вес. В ней делают специальная перфорация, чтобы смола пропитала все слои и соединила их в одну монолитное изделие.

Coremat — состав, сделанный на основе тех же соединений, что и стекловолокно. Стоит значительно дешевле, чем ПХВ, но итоговое изделие получается тяжелее. По своему принципу он похож на стекломат, но весит меньше и впитывает меньше смолы. Поэтому если сравнивать, что лучше — просто накатать больше ткани или использовать coremat, выгоднее выбрать coremat.

Если нужен максимально легкий и быстрый корпус, лучше использовать ПХВ. Если нужно получить дешевую, но тихоходную лодку — выгоднее использовать coremat.

Поверхностный слой

Поверхностный слой — внешний слой корпуса, который дает цвет и защищает от поверхностных повреждений. Обычно его делают из гелькоута или полиуретановой краски.

Гелькоут — соединение по составу очень похожее на смолу, оно тоже может быть на полиэфирной, эпоксидной или эпоксивинилэфирной основе. Если упрощенно, это густая смола с конкретным цветом. Гелькоут достаточно устойчив к поверхностным воздействиям. Закладывается в матрицу, как один из слоев монолитного корпуса.

Полиуретановая краска — тип краски, который хорошо защищает от внешних воздействий. Краска предлагает большой выбор цветов и стоит дороже. Наносится сверху на готовое изделие.

Как строят корпус

Чтобы построить яхту из композита, нужна матрица — форма, в которую будут выкладываться слои ткани и смолы, чтобы в итоге получился корпус. Можно сделать одну матрицу для всей нижней части корпуса — тогда он будет полностью монолитный. Можно сделать несколько маленьких матриц и производить детали по отдельности, а потом вручную собирать их в одно целое — такой метод используют при производстве больших корпусов длинной от 20 метров.

В любом варианте укладывать слои и добиваться отвердевания можно разными способами. Вот основные методики изготовления готового корпуса:

  • ручная формовка
  • ручная формовка + вакуумное обжатие
  • вакуумная инфузия
  • запекание (prepeg)

Ручная формовка — самый трудоемкий и наименее технологичный метод. Рабочие вручную выкладывают ткань в матрицу и пропитывают ее смолой с помощью валика. Для упрощения работы есть специальный инструмент — чоппер. В него загружают смолу и рубленный стекломат, он соединяет внутри эти два компонента и распыляет их как бы из пистолета. Этот метод обычно используют для полиэфирной или эпоксивинилэфирной смолы. Вручную невозможно изготовить композитный сэндвич.

Минусы:
— итоговые изделия получаются тяжелыми из-за избытка смолы
— вручную трудно сделать весь корпус равномерным
Плюсы:
— дешево, просто, не требует специальных знаний и оборудования

Ручная формовка + вакуумное обжатие — в этом случае слои ткани и смолы также наносятся вручную, потом на них надевается специальный мешок, который откачивает лишний воздух и избыток смолы. Воздух — это пузырьки в смоле, которые так или иначе там появляются при методе ручной формовки. Эти пузырьки нарушают однородность корпуса и снижают его прочность. При откачке воздуха финальное изделие получается практически таким же прочным, как при методе вакуумной инфузии. Откачивать воздух можно после укладки каждого слоя по отдельности или после формовки всех слоев. Используется в основном в работе с эпоксидной смолой.

Композитный сэндвич можно изготовить только с помощью метода вакуумного обжатия или вакуумной инфузии.

Минусы:
— трудозатратно, долго и дорого
— нужно специальное оборудование
Плюсы:
— метод дает гарантированный результат, трудно что-то испортить в процессе

Вакуумная инфузия — в этом случае все сухие компоненты сэндвича (кроме смолы) выкладываются в форму-матрицу. Потом матрицу накрывают специальным вакуумным мешком, который откачивает весь воздух и сжимает компоненты. Затем вместо вакуума в деталь подается смола. Благодаря вакууму удается максимально точно контролировать количество смолы, а значит производить детали минимального веса. Метод требует высококвалифицированных специалистов и сложного оборудования. Если в производственном процессе допустить ошибку, есть риск испортить весь корпус и все задействованные материалы.

Минусы:
— нужно специальное оборудование
— требует строителей высокой квалификации
Плюсы:
— безупречное качество корпуса при соблюдении технологии
— при работе с большими объектами выгоднее с точки зрения трудозатрат

Запекание (prepeg) — самый высокотехнологичный метод, используется исключительно при работе с углеволокном. Для него необходим специально оборудованный цех-печь, где можно четко контролировать температуру и влажность.

Корпус яхты изготавливают из особого вида углеткани, сразу пропитанной смолой. Такая ткань перевозится в холодильниках и имеет короткий срок хранения. Из нее вручную формуют корпус яхты при температуре около 18 градусов и влажности не больше 60%. Потом конструкция обжимается вакуумным мешком и целиком запекается при температуре около 100 градусов.

Этот метод позволяет создать максимально легкий и прочный корпус. Например, вес яхты длиной 72 фута без оснастки, оборудования и киля получается около 2700 кг. Запекание используют в строительстве самых быстрых в мире гоночных яхт.

Плюсы:
— минимальный вес корпуса при нужной прочности
Минусы:
— очень дорогие материалы
— сложный и трудоемкий технологический процесс

Какие материалы и технологии используют на верфи Pacifico

Создание корпуса на верфи Pacifico Yachts состоит из нескольких этапов. Для каждой модели есть своя матрица и свои особенности производственного процесса в зависимости от технического проекта и итоговых характеристик яхты.

Поэтому разбирать этапы будем на конкретном примере — строительстве корпуса Pacifico Voyager 99. Нижняя часть корпуса этого проекта полностью монолитна, поэтому формуется в одной большой матрице.

Этап 1. Работа начинается с подготовки и полировки внутренней поверхности матрицы.

Этап 2. После подготовительных работ, наносят внешний слой — гелькоут. Мы используем гелькоут на полиэфирной основе и наносим его пистолетом.

Этап 3. После этого вручную формуется «корка» из стекломата и эпоксивинилэфирной смолы. «Корка» нужна для того, чтобы основной слой корпуса из эпоксидной смолы крепко соединился с полиэфирным гелькоутом.

Этап 4. После того, как сформирована «корка», начинается формовка основного слоя — вручную укладывается сухая основа композитного сэндвича: стеклоткань + ПХВ + углеткань. Плетение и направление ткани выкладывается строго в соответствии с техническим проектом.

Этап 5. Корпус формуется методом вакуумной инфузии: конструкция обтягивается вакуумный мешком, из детали откачивается воздух, затем подается эпоксидная смола.

Этап 6. Смола отвердевает в течение 24 часов, затем корпус извлекается из матрицы и на нем начинаются технические работы.

В результате мы получаем эпоксидный корпус из стеклопластика, армированный углеволокном. Композитный сэндвич с ПВХ добавляет поверхностной прочности — корпус легко выдерживает удар кувалдой или столкновение с камнем, но все еще остается достаточно легким. Сочетание этих технологий и материалов позволяет нам строить быстрые и относительно экономичные катамараны, но при этом сохранять адекватную стоимость конечного продукта.

В этой статье мы разобрали большинство материалов и технологий производства. От них во многом зависят качество и технические характеристики готовой лодки: скорость, экономичность, долговечность и, конечно, цена. Но важно понимать, что в этом деле нет черного и белого, нет однозначно правильных или неправильных подходов к производству — каждый из них отвечает определенной задаче.

Композитные материалы - особенности свойств и основные виды

Что такое композиционный материал (композит)

Композитные материалы (КМ) – говорят, первые упоминания о подобных материалах можно найти в Библии. Композит — это материал, состоящий из двух и более компонентов, которые усиливают и дополняют свойства друг друга. Благодаря чему, конечный  материал обладает свойствами, достижение которых невозможно каждым компонентом по отдельности. Возьмем, к примеру, стеклопластик. Так, если бы какая то  деталь была полностью из стекла, она обладала бы очень большой теоретической прочностью на растяжение или сжатие. Но  на практике, многочисленные поверхностные трещины приводят к разрушению изделия задолго до достижения ее теоретической прочности.  В таком же изделии из стеклопластика, рост какой-то конкретной микротрещины ограничится обрывом одного волокна. А полимерная матрица перераспределит нагрузку на оставшиеся волокна. Примерно так работает самая обычная стеклопластиковая арматура.  Так же, при изготовлении изделия можно заложить направление волокон с учетом предполагаемых направлений нагрузки на изделие. Что позволит избежать излишнего количества материалов в «ненужных» нам направлениях.

Рынок композитов в России

Доля России в мировом производстве композитов минимальна. Емкость рынка композиционных материалов, делает производство КМ одним из наиболее перспективных направлений деятельности в нашей стране.  Если в 1970-е  мы были 4-е в мире по производству композитов, то сейчас не обеспечиваем и 3% мирового спроса. Это в немалой степени обусловлено отсутствием своего сырья, до недавнего времени на долю импорта приходилось 90%.  Но программа импорта замещения работает и в композитной отрасли, так в 2015г. на территории Татарстана было открытие завода по производству углеродного волокна. Предприятие, при выходе на полную мощность, способно полностью удовлетворить потребности российского рынка.

Так же, производство КМ в промышленном масштабе тормозит отсутствие единых технических регламентов в этой сфере. Главгосэкспертиза попросту не пропускает многие проекты в строительстве из-за отсутствия СНИПов на технологию. Тем не менее, с помощью КМ в России усилено больше тысячи строительных объектов. Так в 2014г . в Башкирии 5 мостов были усилены лентами (в основе которых углеродное волокно и эпоксидная смола) для провоза по ним крупногабаритного оборудования ОАО «Газпром» весом почти 100т.

Применение композитных материалов в технике

Полимерные КМ имеют неоспоримый ряд преимуществ в сравнении с металлоконструкциями. Таких как: эксплуатационно-технические, -экономические, технологические. Именно поэтому они (в основном углепластик и стеклопластик) получили широкое применение почти во всех отраслях промышленности.

Авиация

В самолетостроении композитные материалы начали применять еще с 1940-ых, в настоящее же время доля КМ в некоторых образцах достигает 50% (Boeing787 Dreamliner). Из КМ изготавливаются такие детали как: обшивка, руль высоты, руль направления, обтекатели, воздухозаборники, закрылки и т.п. К примеру: замена элементов крепления лопастей к ротору на стеклопластиковые, в некоторых моделях вертолетов, позволила снизить массу деталей на 40%, а стоимость в 2,5 раза.

Ракетная техника

Одними из первых стеклопластиковых деталей, примененных в 60-х годах, в ракетной технике, стали корпуса двигателей боевых ракет. Дальность таких ракет увеличилась с 1500 до 4000км. Сейчас, доля КМ в некоторых типах ракет доходит до 85-90% от общей массы.

Космические аппараты

Посчитано что экономическая выгода от снижения массы космического аппарата всего на 1кг составляет от10000 $ до 50 000 $. Наилучших показателей в снижении веса космических аппаратов удалось добиться только с применением КМ. К концу прошлого века доля композитов в конструкции составляла 20%.

Автомобилестроение

Применение композитов в машиностроении так же продолжает набирать обороты. Сейчас есть проекты создания автомобилей с максимальным применением КМ. Расход топлива такого автомобиля должен составить менее 2,5л на 100км.

Углепластик, стеклопластик, кевларопластик в основе которых эпоксидная и полиэфирная смола и многие другие виды КМ так же обширно применяются в судостроении, железнодорожном транспорте, спортивной технике, строительстве. В качестве только развивающихся видов техники можно выделить радиотехнику, военную технику, ортопедические протезы и современную бытовую технику.

Композитный материал-технологии изготовления

На конечные свойства изделия также влияет то, каким способом оно произведено.   Некоторые методы позволяют организовать производство композитов даже у себя в гараже.  И так, рассмотрим наиболее часто встречающиеся методы производства КМ:

Напыление

Рубленное волокно, перемешанное с катализированной смолой напыляется с помощью пистолета на оснастку.

Связующее : преимущественно, полиэфирная смола

Наполнитель: стекловолокно

Ручная формовка

Сухие армирующие волокна в виде полотен укладываются на матрицу, после чего наносится смола.

Вакуумное формование

После укладки и пропитки ткани как при ручной формовке, на стадии отверждения, применяется давление для укрепления ламината.

Связующее : чаще, эпоксидная смола или фенольная

Намотка

Волокна, пропитанные связующим, наматываются в различных направлениях на оправку. Пример: стеклопластиковые трубы или баллоны.

Пултрузия

Процесс производства профильных изделий из одноосно-ориентированных пластиков непрерывным способом, является аналогией экструзии металлов.

RTM

Сухой армирующий слой укладывается на оснастку, затем вторая часть оснастки закрывается и происходит инъекция смолы в полость.

Автоклав

Препрег (предварительно пропитанное волокно или ткань) выкладывается на поверхность оснастки. Затем оснастка нагревается  под давлением до 120-180 °С. Давление создается автоклавом, а высокая температура активирует катализатор в связующем.

Связующее: обычно эпоксидная, полиэфирная или фенольная смола

Наполнитель: чаще всего углеродное или стекловолкно.

В заключение

ХХI век давно называют веком композитных материалов, как были каменные и бронзовые века в древности. Композиты прочно вошли в нашу жизнь, изделия из углепластика и стеклопластика можно встретить во всех отраслях промышленности и в быту. Ясно, что у российского рынка композитов колоссальный потенциал. Производству ПКМ способствуют различные Государственные программы.  Технология изготовления изделий из композиционных материалов вошла в число 27 приоритетных направлений, предусмотренных Указом №899 «Об утверждении приоритетных направлений развития науки, технологий и техники в РФ и перечня критических технологий РФ». Владение базовой теорией композитов может пригодиться и в быту от ремонта стеклопластиковой душевой кабины до упрочнения фундамента домов углеродной лентой. О перспективах компаний производящих композитные материалы  не приходиться и говорить.

Буду признателен за любую обратную связь. Спасибо!

Наука и технология композиционных материалов

Послушайте эту тему

В таком развитом обществе, как наше, все мы зависим от композитных материалов в некоторых аспектах нашей жизни. Стекловолокно был разработан в конце 1940-х годов и стал первым современным композитом. Он по-прежнему самый распространенный, составляя около 65% всех производимых сегодня композитов. Он используется для изготовления корпусов лодок, досок для серфинга, спортивных товаров, облицовки бассейнов, строительных панелей и кузовов автомобилей.Вы вполне можете использовать что-то из стекловолокна, даже не подозревая об этом.

Лодки, доски для серфинга, автомобили и многое другое: нас окружают стекловолокно и другие композитные материалы. Источник изображения: sobri / Flickr.

Что делает материал композитным

Композиционные материалы образуются путем объединения двух или более материалов, которые имеют совершенно разные свойства. Различные материалы работают вместе, чтобы придать композиту уникальные свойства, но внутри композита вы можете легко отличить разные материалы друг от друга - они не растворяются и не смешиваются друг с другом.

Композиты существуют в природе. Кусок дерева представляет собой композит, состоящий из длинных волокон целлюлозы (очень сложной формы крахмала), удерживаемых вместе гораздо более слабым веществом, называемым лигнином. Целлюлоза также содержится в хлопке и льне, но именно связующая способность лигнина делает кусок древесины намного прочнее, чем пучок хлопковых волокон.

Идея не нова

Люди использовали композитные материалы на протяжении тысяч лет. Возьмем, к примеру, сырцовые кирпичи.Если вы попытаетесь согнуть лепешку из засохшей грязи, она легко сломается, но она окажется крепкой, если вы попытаетесь раздавить или сжать ее. Кусок соломы, с другой стороны, обладает большой силой, когда вы пытаетесь ее растянуть, но почти не имеет силы, когда вы ее сминаете. Когда вы объединяете грязь и солому в блок, свойства двух материалов также объединяются, и вы получаете кирпич, который прочен как на сжатие, так и на разрыв или изгиб. Говоря более технически, у него есть и хорошие прочность на сжатие и хорошо предел прочности .

Мужчина восстанавливает древнюю цитадель из сырцового кирпича в Иране после того, как она была повреждена в результате землетрясения. Глиняные кирпичи - это те же материалы, которые использовались для его постройки около 2500 лет назад. Источник изображения: OXLAEY.com / Flickr.

Еще один известный композит - бетон. Здесь заполнитель (мелкие камни или гравий) скреплен цементом. Бетон обладает хорошей прочностью при сжатии, и его можно сделать более прочным при растяжении, добавив в композит металлические стержни, проволоку, сетку или тросы (таким образом создавая железобетон).

Композиты были сделаны из формы углерода, называемой графеном, в сочетании с металлической медью, что позволило получить материал, в 500 раз более прочный, чем сама медь. Точно так же композит графена и никеля имеет прочность более чем в 180 раз больше никеля.

Что касается стекловолокна, то оно производится из пластик который был армирован нитями или стекловолокном. Эти нити можно либо связать вместе и сплести в мат, либо их иногда можно разрезать на короткие отрезки, которые произвольно ориентированы в пластиковой матрице.

Больше чем сила

В настоящее время многие композиты производятся не только для улучшения прочности или других механических свойств, но и для других целей. Многие композиты предназначены для того, чтобы быть хорошими проводниками или изоляторами тепла или иметь определенные магнитные свойства; свойства, которые очень специфичны и специализированы, но также очень важны и полезны. Эти композиты используются в огромном количестве электрических устройств, включая транзисторы, солнечные элементы, датчики, детекторы, диоды и лазеры, а также для изготовления антикоррозионных и антистатических покрытий поверхностей.

Композиты, изготовленные из оксидов металлов, также могут обладать определенными электрическими свойствами и используются для производства кремниевых чипов, которые могут быть меньше и плотнее упакованы в компьютер. Это увеличивает объем памяти и скорость компьютера. Оксидные композиты также используются для создания высокотемпературных сверхпроводящих свойств, которые теперь используются в электрических кабелях.

Изготовление композита

Большинство композитов состоит всего из двух материалов.Один материал (матрица или связующее) окружает и связывает скопление волокон или фрагменты гораздо более прочного материала (армирования). В случае глиняных кирпичей две роли берут на себя грязь и солома; в бетоне - цементом и заполнителем; в дереве целлюлозой и лигнином. В стекловолокне армирование обеспечивается тонкими нитями или стекловолокном, часто вплетенными в нечто вроде ткани, а матрица представляет собой пластик.

Примеры различных форм армирования стекловолокном, которые будут использоваться при создании стекловолокна.Источник изображения: Cjp24 / Wikimedia Commons.

Стекловолоконные нитки из стекловолокна очень прочные при растяжении, но они также хрупкие и ломаются при резком сгибании. Матрица не только удерживает волокна вместе, но и защищает их от повреждений, разделяя любые стресс среди них. Матрица достаточно мягкая, чтобы ее можно было придать инструментам, и ее можно размягчить подходящими растворителями, чтобы можно было произвести ремонт. Любая деформация листа стекловолокна обязательно растягивает часть стекловолокна, и они способны этому противостоять, поэтому даже тонкий лист очень прочен.Он также довольно легкий, что является преимуществом для многих приложений.

За последние десятилетия было разработано много новых композитов, некоторые из которых обладают очень ценными свойствами. Тщательно выбирая арматуру, матрицу и производственный процесс, объединяющий их, инженеры могут адаптировать свойства к конкретным требованиям. Они могут, например, сделать композитный лист очень прочным в одном направлении, выравнивая волокна таким образом, но более слабым в другом направлении, где прочность не так важна.Они также могут выбирать такие свойства, как устойчивость к теплу, химическим веществам и атмосферным воздействиям, выбирая подходящий матричный материал.

Выбор материалов для матрицы

В качестве матрицы во многих современных композитах используются термореактивные или термопластичные пластмассы (также называемые смолами). (Использование пластика в матрице объясняет название «армированный пластик», которое обычно дают композитам). Пластмассы полимеры которые удерживают арматуру вместе и помогают определить физические свойства конечного продукта.

Термореактивные пластмассы являются жидкими при приготовлении, но затвердевают и становятся жесткими (т. Е. Затвердевают) при нагревании. Процесс схватывания необратим, поэтому эти материалы не становятся мягкими при высоких температурах. Эти пластмассы также устойчивы к износу и воздействию химикатов, что делает их очень прочными даже в экстремальных условиях окружающей среды.

Термопласты, как следует из названия, твердые при низких температурах, но размягчаются при нагревании. Хотя они используются реже, чем термореактивные пластмассы, они обладают некоторыми преимуществами, такими как большая вязкость разрушения, длительный срок хранения сырья, возможность вторичной переработки и более чистое и безопасное рабочее место, поскольку для процесса отверждения не требуются органические растворители.

Керамика, углерод и металлы используются в качестве матрицы для некоторых узкоспециализированных целей. Например, керамика используется, когда материал будет подвергаться воздействию высоких температур (например, теплообменники), а углерод используется для продуктов, которые подвергаются трению и износу (например, подшипники и шестерни).

Изображение под электронным микроскопом в искусственных цветах композита с магниевой матрицей, армированного карбидом титана и алюминия. Источник изображения: ZEISS Microscopy / Flickr.

Выбор материалов для армирования

Хотя стекловолокно является наиболее распространенным армированием, во многих современных композитах теперь используются тонкие волокна из чистого углерода.Можно использовать два основных типа углерода - графит и углеродные нанотрубки. Оба являются чистым углеродом, но атомы углерода расположены в разных кристаллических конфигурациях. Графит - очень мягкое вещество (используется в «свинцовых карандашах») и состоит из листов атомов углерода, расположенных в виде шестиугольников. Связи, удерживающие шестиугольники вместе, очень прочные, но связи, удерживающие вместе листы шестиугольников, довольно слабые, что и делает графит мягким. Углеродные нанотрубки изготавливаются путем скатывания одного листа графита (известного как графен) в трубку.Это создает чрезвычайно прочную структуру. Также возможно изготовление трубок из нескольких цилиндров - трубок внутри трубок.

Композиты из углеродного волокна легки и намного прочнее, чем стекловолокно, но при этом дороже. Из этих двух графитовые волокна дешевле и их легче производить, чем углеродные нанотрубки. Они используются в конструкциях самолетов и в высокопроизводительном спортивном оборудовании, таком как клюшки для гольфа, теннисные ракетки и гребные лодки, и все чаще используются вместо металлов для ремонта или замены поврежденных костей.

Нити бора даже прочнее (и дороже) углеродных волокон. Нанотрубки из нитрида бора обладают дополнительным преимуществом, поскольку они намного более устойчивы к нагреванию, чем углеродные волокна. Они также обладают пьезоэлектрическими качествами, что означает, что они могут генерировать электричество при приложении к ним физического давления, например при скручивании или растяжении.

Полимеры также могут использоваться в качестве армирующего материала в композитах. Например, кевлар, первоначально разработанный для замены стали в радиальных шинах, но наиболее известный благодаря использованию в пуленепробиваемых жилетах и ​​шлемах, представляет собой чрезвычайно прочное полимерное волокно, которое придает прочность композитному материалу.Он используется в качестве арматуры в композитных изделиях, которые требуют легкой и надежной конструкции (например, структурные части корпуса самолета). Еще более прочным, чем кевлар, является вещество, состоящее из комбинации графена и углеродных нанотрубок.

Выбор производственного процесса

Для изготовления объекта из композитного материала обычно используется какая-либо форма. Армирующий материал сначала помещается в форму, а затем полужидкий матричный материал распыляется или закачивается для формирования объекта.Можно приложить давление, чтобы вытеснить пузырьки воздуха, а затем форму нагревают, чтобы матрица затвердела.

Процесс формования часто выполняется вручную, но автоматическая обработка становится все более распространенной. Один из этих методов называется пултрузия (термин, образованный от слов «вытягивание» и «экструзия»). Этот процесс идеально подходит для производства прямых изделий с постоянным поперечным сечением, например мостовых балок.

Во многих тонких структурах сложной формы, таких как изогнутые панели, композитная структура создается путем наложения листов тканого армирующего волокна, пропитанного пластиковым матричным материалом, поверх базовой формы соответствующей формы.Когда панель достигнет необходимой толщины, матричный материал отверждается.

Сэндвич-композиты

Многие новые типы композитов создаются не с помощью матрицы и метода армирования, а путем укладки нескольких слоев материала. Структура многих композитов (например, тех, которые используются в панелях крыла и корпуса самолетов) состоит из пластиковых сот, зажатых между двумя оболочками из композитного материала, армированного углеродным волокном.

Сотовая композитная сэндвич-структура от НАСА.Источник изображения: НАСА / Wikimedia Commons.

Эти многослойные композитные материалы сочетают в себе высокую прочность и, в частности, жесткость на изгиб и малый вес. Другие методы включают в себя простую укладку нескольких чередующихся слоев разных веществ (например, графена и металла) для создания композита.

Зачем использовать композиты?

Самое большое преимущество композитных материалов - прочность и жесткость в сочетании с легкостью.Выбирая подходящую комбинацию армирования и материала матрицы, производители могут создавать свойства, которые точно соответствуют требованиям для конкретной конструкции для конкретной цели.

  • Композиты в Австралии

    Австралия, как и все развитые страны, проявляет большой интерес к композитным материалам, которые многие люди считают «материалами будущего». Основная задача - снизить затраты, чтобы композитные материалы можно было использовать в продуктах и ​​приложениях, которые в настоящее время не оправдывают затрат.В то же время исследователи хотят улучшить характеристики композитов, например сделать их более устойчивыми к ударам.

    Одна из новых технологий связана с «текстильными композитами». Вместо того, чтобы укладывать армирующие волокна по отдельности, что является медленным и дорогостоящим процессом, их можно связать или сплести вместе, чтобы получить своего рода ткань. Он может быть даже трехмерным, а не плоским. Пространства между текстильными волокнами и вокруг них затем заполняются матричным материалом (например, смолой) для изготовления продукта.

    Этот процесс может быть легко выполнен машинами, а не вручную, что делает его быстрее и дешевле. Соединение всех волокон вместе также означает, что композит с меньшей вероятностью будет поврежден при ударе.

    По мере снижения стоимости другие применения композитов начинают выглядеть привлекательными. При изготовлении корпусов и надстроек лодок из композитов используется их устойчивость к коррозии. У минных охотников ВМС Австралии композитный корпус, поскольку магнитный эффект стального корпуса может помешать обнаружению мин.

    Также в разработке находятся вагоны для поездов, трамваев и других средств передвижения, сделанные из композитных материалов, а не из стали или алюминия. Здесь привлекательность заключается в легкости композитов, поскольку в этом случае автомобили потребляют меньше энергии. По той же причине в будущем мы увидим все больше и больше композитов в автомобилях.

Современная авиация, как военная, так и гражданская, является ярким примером. Без композитов было бы гораздо менее эффективно. Фактически, требования, предъявляемые этой отраслью к легким и прочным материалам, были основной движущей силой развития композитов.Сейчас обычным явлением являются крылья и хвостовое оперение, гребные винты и лопасти несущего винта, сделанные из современных композитных материалов, а также большая часть внутренней конструкции и деталей. Каркасы некоторых небольших самолетов полностью сделаны из композитных материалов, как и крыло, хвостовое оперение и панели корпуса больших коммерческих самолетов.

Размышляя о самолетах, стоит помнить, что композиты с меньшей вероятностью, чем металлы (например, алюминий), полностью разрушатся под действием нагрузки. Небольшая трещина в куске металла может очень быстро распространиться с очень серьезными последствиями (особенно в случае самолета).Волокна в композите блокируют расширение любой небольшой трещины и распределяют напряжение вокруг нее.

Правильные композиты также хорошо выдерживают нагрев и коррозию. Это делает их идеальными для использования в продуктах, работающих в экстремальных условиях, таких как лодки, оборудование для обработки химикатов и космические корабли. В целом композитные материалы очень прочные.

Еще одно преимущество композитных материалов заключается в том, что они обеспечивают гибкость конструкции. Из композитов можно придавать сложные формы, что является отличным преимуществом при производстве чего-то вроде доски для серфинга или корпуса лодки.

Кроме того, в настоящее время большая работа направлена ​​на разработку композитных материалов из отходов, таких как сельскохозяйственные отходы, строительный материал

.

Композиционные материалы | Технология композитных материалов

Перейти к основному содержанию Связаться с нами

Подробнее

Поиск

Поиск:

Х

Поиск:

  • Товары
    • Распределение полимеров
    • Краски для трафаретной печати
      • Программное обеспечение для управления чернилами
      • Технические советы
      • Дистрибьюторы трафаретной печати Wilflex
    • Продвинутые композиты
      • Композитные панели из непрерывного волокна
.

% PDF-1.5 % 1268 0 объект > endobj xref 1268 64 0000000016 00000 н. 0000003251 00000 н. 0000003402 00000 п. 0000003911 00000 н. 0000004051 00000 н. 0000004186 00000 п. 0000004215 00000 н. 0000004244 00000 н. 0000004458 00000 п. 0000005068 00000 н. 0000005269 00000 н. 0000005308 00000 п. 0000005907 00000 н. 0000006020 00000 н. 0000006135 00000 н. 0000006653 00000 п. 0000006892 00000 н. 0000007311 00000 н. 0000007819 00000 п. 0000008737 00000 н. 0000008879 00000 н. 0000009024 00000 н. 0000009053 00000 н. 0000009707 00000 н. 0000010370 00000 п. 0000011016 00000 п. 0000011644 00000 п. 0000012444 00000 п. 0000013226 00000 п. 0000013970 00000 п. 0000014670 00000 п. 0000017321 00000 п. 0000017392 00000 п. 0000017474 00000 п. 0000041867 00000 п. 0000042139 00000 п. 0000042582 00000 п. 0000042664 00000 п. 0000049670 00000 п. 0000091227 00000 п. 0000091513 00000 п. 0000091584 00000 п. 0000091666 00000 п. 0000113831 00000 н. 0000114097 00000 н. 0000114489 00000 н. 0000115031 00000 н. 0000115102 00000 п. 0000115173 00000 н. 0000115255 00000 н. 0000121197 00000 н. 0000121471 00000 н. 0000121642 00000 н. 0000121671 00000 н. 0000121970 00000 н. 0000122076 00000 н. 0000123928 00000 н. 0000124237 00000 н. 0000124588 00000 н. 0000124688 00000 н. 0000126077 00000 н. 0000126381 00000 п. 0000003044 00000 н. 0000001612 00000 н. трейлер ] / Назад 1502307 / XRefStm 3044 >> startxref 0 %% EOF 1331 0 объект > поток h ެ UmLSW ~ 6um-Cb 3tҎ) Pb: Z *, EWt? JuD ݜ 27% f2 "ek '} sy {

.

Композитный материал - Простая английская Википедия, бесплатная энциклопедия

Ткань из тканых нитей углеродного волокна, распространенный элемент в композитных материалах.

Композитные материалы состоят из двух или более основных материалов, смешанных вместе. Материалы могут быть натуральными или нет, и при смешивании сохраняют свои отдельные свойства. Однако композитный материал в целом может вести себя иначе, чем любая из его частей. Например, железобетон (из бетона и стали) имеет сопротивление давлению и изгибающим силам.Пуленепробиваемое стекло (сделанное из стекла и пластика) более устойчиво к ударам, чем стекло или пластик сами по себе.

Сам по себе бетон представляет собой композитный материал, один из старейших искусственных композитов, который используется больше, чем любой другой искусственный материал в мире. [1]

Древесина представляет собой натуральный композит из целлюлозных волокон в матрице лигнина. [2] [3] Самыми ранними искусственными композитными материалами были солома и грязь, объединенные в кирпичи для строительства.Этот древний процесс изготовления кирпича был задокументирован картинами египетских гробниц.

Сегодня широко используются полимеры, армированные волокном, и пластмассы, армированные стекловолокном.

Фанера - распространенный композитный материал, с которым многие люди сталкиваются в повседневной жизни.

Самыми примитивными композитными материалами были солома и ил в виде кирпичей для строительства. Библейская книга Исход рассказывает об израильтянах, которых угнетал фараон и заставлял делать «кирпичи без соломы». [4] Сегодня мы используем душевые кабины и ванны из стеклопластика, типа композитного материала.

  1. ↑ Lomberg, Bjorn 2001. Скептический защитник окружающей среды: измерение реального состояния мира . Издательство Кембриджского университета, стр.138. ISBN 978-0-521-80447-9
  2. ↑ Hubbe M.A. & Lucia L.A. 207. Отношения любви и ненависти, присутствующие в лигноцеллюлозных материалах. Биоресурсы . 2 , 534. [1]
  3. ↑ Хон, Дэвид и Сираиси, Нобуо (ред.) 2001. Химия древесины и целлюлозы . 2-е изд, Нью-Йорк: Марсель Деккер.
  4. ↑ Старый процесс изготовления кирпича до сих пор можно увидеть на росписях египетских гробниц в Музее искусств Метрополитен [2].
.

Анализируйте слоистые композитные материалы с помощью программного обеспечения из COMSOL

Элемент многослойного материала

Узел Layered Material может использоваться для определения компоновки, где каждый слой имеет свои собственные данные материала, толщину и основную ориентацию. Слоистые материалы, определенные таким образом, можно комбинировать с помощью узла Layered Material Stack для создания более сложных многослойных материалов, что особенно удобно, когда наложение повторяется или при моделировании выпадения слоев.Вы также можете определить свойства материала для границ раздела слоев.

Графики предварительного просмотра слоев

Для визуализации входных данных составного слоя есть два графика предварительного просмотра Layer Stack Preview и Layer Cross Section Preview . На графике Layer Stack Preview показано количество слоев, а также основные ориентации волокон в каждом слое. На графике Layer Cross Section Preview показана толщина каждого слоя вместе с положением базовой плоскости.

Соединение слоистых материалов

При соединении двух разных ламинатов в конфигурации бок о бок или моделировании ситуации выпадения слоя можно использовать узел Layered Material Stack вместе с узлом Continuity в интерфейсе Layered Shell . Площадь соединения двух ламинатов можно контролировать с помощью различных опций. Связанные слои обоих ламинатов можно визуализировать с помощью графика Layer Cross Section Preview , доступного на узле Continuity .

Набор данных слоистого материала

Даже несмотря на то, что композитный ламинат моделируется как поверхностная (2D) геометрия, вы можете визуализировать результаты на геометрии с конечной толщиной, используя набор данных Layered Material . Это также позволяет масштабировать геометрию в направлении толщины для лучшей визуализации в виде тонких ламинатов. Используя этот набор данных, вы можете отобразить результаты либо в виде поверхности на 3D-геометрии, либо в виде срезов в 3D-геометрии.

Участок слоистого материала

График Layered Material Slice обеспечивает большую свободу с точки зрения создания срезов в композитном ламинате.Это полезно в следующих случаях:

  • Создание среза только через один или несколько выбранных слоев
  • Создание среза некоторых или всех слоев, но не обязательно размещение их в направлении сквозной толщины
  • Детальное изучение конкретного слоя и создание среза в определенной позиции внутри слоя, которая не является средней плоскостью

Участок по толщине

График Сквозная толщина позволяет визуализировать изменение любого количества в определенном месте на границе в зависимости от толщины ламината.Вы можете выбрать одну или несколько геометрических точек на границе или, при желании, создать наборы данных точек разреза. Также возможно указать координаты точки напрямую. В отличие от других графиков, величина результата нанесена на ось x , а координата толщины нанесена на ось y .

.

Композитные конструкции - Журнал - Elsevier

За последние несколько десятилетий были отмечены выдающиеся достижения в использовании композитных материалов в конструкционных приложениях . Вряд ли можно сомневаться в том, что в инженерных кругах композиты произвели революцию в традиционных концепциях дизайна и открыли беспрецедентный диапазон новых и захватывающих возможностей ...

Прочитайте больше

За последние несколько десятилетий были отмечены выдающиеся достижения в использовании композитных материалов в конструкционных приложениях .Не может быть никаких сомнений в том, что в инженерных кругах композиты произвели революцию в традиционных концепциях дизайна и сделали возможным беспрецедентный диапазон новых и захватывающих возможностей в качестве жизнеспособных материалов для строительства. Composite Structures , международный журнал, распространяет знания между пользователями, производителями, проектировщиками и исследователями, занимающимися конструкциями или конструктивными элементами, изготовленными с использованием композитных материалов.

В журнале публикуются статьи, которые способствуют развитию знаний об использовании композитных материалов в инженерных сооружениях .Документы посвящены проектированию, исследованиям и разработкам, экспериментальным исследованиям, теоретическому анализу и технологиям изготовления, относящимся к применению композитов в несущих компонентах для сборок, начиная от отдельных компонентов, таких как пластины и оболочки, до комплектных композитных конструкций .

Преимущества для авторов
Мы также предоставляем множество преимуществ для авторов, такие как бесплатные PDF-файлы, либеральная политика в отношении авторских прав, специальные скидки на публикации Elsevier и многое другое.Щелкните здесь, чтобы получить дополнительную информацию о наших услугах для авторов.

Информацию о подаче статей см. В нашем Руководстве для авторов. Если вам потребуется дополнительная информация или помощь, посетите наш Центр поддержки

Hide full Aims & Scope .

Смотрите также