Коэффициент уплотнения грунта при обратной засыпке


Коэффициент уплотнения грунта

Коэффициент уплотнения грунта – это отношение фактической плотности грунта (скелета грунта) в насыпи, к максимальной плотности грунта (скелета грунта).

Например:

Что значит коэффициент уплотнения 0,95?

Коэффициент уплотнения грунта 0,95 означает, что фактическая плотность грунта составляет 95% от максимально возможной плотности грунта (определяется в грунтовой лаборатории).

Нормативные коэффициенты уплотнения приведены в таблице в конце страницы.

Данный коэффициент определяют следующими методами:

1. Метод режущего кольца — отбирают пробы грунта из уплотняемого слоя и производят испытание в грунтовой лаборатории в соответствии с ГОСТ 5180-2015 «Грунты. Методы лабораторного определения физических  характеристик». Главный недостаток метода: длительные испытания (транспортирование и испытание в лаборатории)

Режущие кольца для определения коэффициента уплотнения грунта

2. Динамическим плотномером грунта (ДПГ) — принцип действия основан на методе падающего груза, при котором измеряется сила удара и деформация грунта. Применяется совместно с методом режущего кольца с целью ускорения определения коэффициента уплотнения грунта.

  • На начальном этапе ДПГ калибруется в нескольких местах отбора проб по данным испытаний по методу режущего кольца (ГОСТ 5180-2015)
  • Затем по данным калибровки определяют коэффициент уплотнения в остальных точках, что позволяет получить результаты сразу на площадке.

Требуемый коэффициент уплотнения грунта (согласно СНиП 3.02.01-87) обратной засыпки или насыпи представлен в таблице 1.

Таблица 1. Коэффициент уплотнения грунта

Тип грунта Контрольные значения коэффициентов уплотнения kcom
при нагрузке на поверхность уплотненного грунта, МПа (кг/см2)
0 0,05 – 0,2 (0,5 – 2) св. 0,2 (2)
при общей толщине отсыпки, м
до 2 2,01-4 4,01-6 св. 6 до 2 2,01-4 4,01-6 св. 6 до 2 2,01-4 4,01-6 св. 6
Глинистые 0,92 0,93 0,94 0,95 0,94 0,95 0,96 0,97 0,95 0,96 0,97 0,98
Песчаные 0,91 0,92 0,93 0,94 0,93 0,94 0,95 0,96 0,94 0,95 0,96 0,97

 

 

 

 

 

 

Таким образом, например, коэффициент уплотнения грунта обратной засыпки выполненной из песка, мощностью отсыпки 2,5 м и нагрузкой на насыпь 0,3МПа составляет 0,95

Как достичь требуемого коэффициента уплотнения?

Удельный вес грунта в соответствии с ГОСТ

Коэффициент первоначального разрыхления грунта

ТР 73-98 Технические рекомендации по технологии уплотнения грунта при обратной засыпке котлованов, траншей, пазух, ТР (Технические рекомендации) от 24 сентября 1998 года №73-98


ТР 73-98



Дата введения 1999-01-01



РАЗРАБОТАНЫ НИИМосстроем

ВНЕСЕНЫ Управлением развития Генплана

УТВЕРЖДЕНЫ Первым заместителем руководителя Комплекса перспективного развития города В.Е.Басиным 24 сентября 1998 года


"Технические рекомендации по технологии уплотнения грунта при обратной засыпке котлованов, траншей, пазух" разработаны кандидатами технических наук В.М.Гольдиным, Л.В.Городецким, инженером В.Ф.Деминым (лаборатория дорожного строительства НИИМосстроя) при участии Мосстройлицензии.

В Технических рекомендациях обобщен опыт строительных организаций ХК "Главмосстроя", АО "Мосинжстроя" по уплотнению грунта при засыпке котлованов, траншей, пазух, а также разрытий проезжей части дороги.

Технические рекомендации согласованы с АО "Мосинжстрой" трестом Гордорстрой, проектным институтом "Мосинжпроект".

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Технические рекомендации распространяются на работы по уплотнению грунта при обратной засыпке котлованов, траншей, пазух после прокладки подземных инженерных сетей, устройства фундаментов возводимых зданий.

1.2. Технические рекомендации распространяются также на работы по уплотнению грунта после восстановительного ремонта подземных инженерных сетей в зоне проезжей части дороги.

1.3. Уплотнение грунта следует производить в соответствии со СНиП 3.02.01-87 "Земляные сооружения, основания и фундаменты" и ВСН 52-96 "Инструкция по производству земляных работ в дорожном строительстве и при устройстве подземных инженерных сетей".

1.4. Характеристики, термины и определения грунтов используются в соответствии с ГОСТ 25100-95 "Грунты. Классификация".

2. ТЕХНОЛОГИЯ УПЛОТНЕНИЯ ГРУНТА ПРИ ОБРАТНОЙ ЗАСЫПКЕ КОТЛОВАНОВ

2.1. Разрешение на обратную засыпку грунтом котлованов дается комиссией, состоящей из производителя работ, заказчика и автора проекта, одновременно с составлением акта на скрытые работы.

2.2. Требуемая плотность грунта при засыпке котлованов назначается проектом на основании данных исследования грунта методом стандартного уплотнения, при котором устанавливается его оптимальная влажность и максимальная плотность, которая должна быть не менее 0,95.

2.3. Для определения основных свойств грунта необходимо руководствоваться техническим заключением Мосгоргеотреста об инженерно-геологических условиях участка строительства.

2.4. Уплотнение грунта следует производить, когда его естественная влажность является оптимальной. В таблице 2.1 приводятся оптимальные влажности грунтов и допустимые отклонения влажности (коэффициент "переувлажнения").

Таблица 2.1

Наименование грунта

Оптимальная влажность,%

Коэффициент "переувлажнения"

Пески пылеватые, супеси легкие крупные

8-12

1,35

Супеси легкие и пылеватые

9-15

1,25

Супеси тяжелые пылеватые, суглинки легкие и легкие пылеватые

12-17

1,15

Суглинки тяжелые и тяжелые пылеватые

16-23

1,05



Определять естественную влажность грунтов следует по ГОСТ 5180-84.

2.5. При недостаточной влажности связных грунтов (содержание глинистых частиц более 12%) их следует увлажнять в местах разработки, а увлажнять несвязные грунты (содержание глинистых частиц менее 3%) можно и в отсыпаемом слое. При избыточной влажности грунта следует производить его подсушивание.

2.6. Засыпку грунта или песка под основание полов по дну готового котлована подземной части здания осуществляют стреловыми кранами, оборудованными грейферами, с разравниванием грунта по дну котлована и уплотнением трамбовками.

2.7. Машины и механизмы для уплотнения грунтов следует выбирать с учетом свойств и состояния уплотняемого грунта (влажности, однородности, гранулометрического состава), требуемой степени уплотнения, объемов работ и темпов их выполнения (п.2.9, табл.4.1). Расстановка машин для обратной засыпки котлованов производится в соответствии с проектом производства работ по строительству конкретного здания.

2.8. Обратная засыпка котлованов производится стреловыми кранами, оборудованными грейферами, экскаваторами типа ЭО-2621В-3, ЭО-3123, ЭО-4225 и др. послойно.

2.9. Уплотнение засыпаемого грунта в котлованах производится гидромолотами типа СП-62, СП-71, "РАММЕР", виброплитами ДУ-90, ДУ-91, электротрамбовками ИЭ-4502А. На рис.2.1 представлена схема засыпки грунта под полы в подвале здания.

Рис.2.1. Схема засыпки грунта под полы в подвале здания


Рис.2.1. Схема засыпки грунта под полы в подвале здания:

а) сборные фундаменты, б) свайные фундаменты;

1 - сборный фундамент с установленной колонной; 2 - зона уплотнения грунта ручными электротрамбовками;
3 - зона уплотнения грунта механическими трамбовками; 4 - стена здания; 5 - железобетонный ростверк;
6 - забитая свая. В - принимать по табл.3.1

2.10. Средняя толщина отсыпаемого слоя грунта при применении гидромолотов и виброплит должна быть для: песка - 70 см; супеси и суглинков - 60 см; глины - 50 см. При применении электротрамбовок типа ИЭ-4502А толщина отсыпаемого слоя должна быть не более 25 см.

2.11. Для достижения плотности уплотняемого грунта до К=0,95 время уплотнения по одному следу гидромолотами должно быть 15 секунд. При применении виброплит и электротрамбовок число проходов (ударов) должно быть 3-4. Каждый последующий проход (удар) уплотняющей машины должен перекрывать след предыдущей на 10-20 см.

2.12. Выполненные работы по уплотнению грунта предъявить авторскому и техническому надзорам и составить акт на скрытые работы.

3. ТЕХНОЛОГИЯ УПЛОТНЕНИЯ ГРУНТА ПРИ ОБРАТНОЙ ЗАСЫПКЕ ПАЗУХ

3.1. До начала обратной засыпки грунтом пазух должны быть закончены следующие работы: монтаж конструкций подземной части зданий; уборка строительного мусора; гидроизоляция; дренаж.

3.2. Требуемая плотность песчаного грунта при засыпке пазух должна быть не менее K=0,98.

3.3. Засыпка пазух производится послойно экскаваторами, экскаваторами-планировщиками, бульдозерами. При этом толщина слоя для песка должна быть не более 70 см; для супеси и суглинка - 60 см, для глины - 50 см.

3.4. Уплотнение засыпаемого грунта в пазухах осуществляется гидромолотами типа СП-62, СП-71, "РАММЕР", виброплитами ДУ-90, ДУ-91.

3.5. Для достижения плотности уплотняемого грунта до K=0,98 время уплотнения по одному следу должно быть 20 секунд.

3.6. Грунт уплотняют, начиная с зон возле конструкций здания, а затем двигаются в направлении к краю откоса, при этом каждый последующий проход трамбующей машины должен перекрывать след предыдущей на 10-20 см (рис.3.1).

Рис.3.1. Схема обратной засыпки пазухи котлована


Рис.3.1. Схема обратной засыпки пазухи котлована:

1 - отмостка; 2 - стена здания; 3 - вертикально установленная керамзитобетонная плита;
4 - зона уплотнения грунта вручную; 5 - фундаментная плита; 6 - горизонтально уложенная
керамзитобетонная плита; 7 - дренажная труба; 8 - граница засыпки дренажа песком;
9 - слои грунта, уплотняемые легкими механическими трамбовками; п.п. - пол подвала;
- толщина отсыпаемого слоя грунта принимается до 0,25 м


Примечание. Керамзитобетонные плиты могут быть заменены полимерными материалами согласно ВСН 35-95 "Инструкция по технологии применения полимерных фильтрующих оболочек для защиты подземных частей зданий и сооружений от подтопления грунтовыми водами".

3.7. При работе по уплотнению грунта вблизи конструкций возводимого здания, мест ввода коммуникаций и других труднодоступных мест должны применяться электротрамбовки типа ИЭ-4505, ИЭ-4502А. При этом толщина отсыпаемого слоя должна быть не более 25 см и количество проходов - не менее 4.

3.8. Отметки верхнего слоя уплотняемого грунта должны строго соответствовать проекту.

3.9. Выполненные работы предъявить авторскому и техническому надзору и составить акт на скрытые работы.

3.10. Рекомендуемые машины и механизмы для уплотнения грунта при обратной засыпке котлованов и пазух в стесненных местах указаны в табл.3.1.

Таблица 3.1

Соотношение масс строительных конструкций (М) и уплотняющих машин и механизмов (m), кг

Mm

M5m

M10m

Тип и марка
уплотняющих машин и механизмов

Масса уплот-
няющих машин
и меха-
низмов (m), кг

Минимальное расстояние от уплотняющих машин и механизмов до строительных конструкций и толщина отсыпаемого слоя грунта , см


Гидромолоты (навесные на экскаваторы):

ГПМ-120

275

25

50

20

40

20

30

ГПМ-150

345

25

50

20

40

20

30

ГПМ-300

1033

50

70

30

70

20

60

СП-71А

750

50

70

30

70

20

60

СП-71

750

50

70

30

70

20

60

СП-62

2100

60

90

40

90

20

80

Пневмомолоты (навесные на экскаваторы):

что такое и как рассчитать

Главная > Часто задаваемые вопросы > Коэффициент уплотнения грунтов и строительных материалов

Коэффициент уплотнения – это показатель, демонстрирующий, насколько изменяется объем сыпучего материала после трамбовки или перевозки. Определяется он по соотношению общей и максимальной плотности.

Любой сыпучий материал состоит из отдельных элементов – зерен. Между ними всегда есть пустоты, или поры. Чем выше процент этих пустот, тем больший объем будет занимать вещество.

Попробуем объяснить это простым языком: вспомните детскую игру в снежки. Чтобы получить хороший снежок, нужно зачерпнуть из сугроба горсть побольше и посильнее ее сжать. Таким образом мы сокращаем количество пустот между снежинками, то есть уплотняем их. При этом уменьшается и объем.

То же самое будет, если насыпать в стакан немного крупы, а затем встряхнуть ее или утрамбовать пальцами. Произойдет уплотнение зерен.

Иными словами, коэффициент уплотнения – это и есть разница между материалом в его обычном состоянии и утрамбованном.

Для чего нужно знать коэффициент уплотнения

Знать коэффициент уплотнения для сыпучих материалов необходимо, чтобы:

  • Проконтролировать, действительно ли вам привезли заказанное количество материала
  • Купить правильное количество песка, щебня, отсева для засыпки котлованов, ям или канав
  • Рассчитать вероятную усадку грунта при закладке фундамента, прокладке дороги или тротуарной плитки
  • Правильно рассчитать количество бетонной смеси для заливки фундаментов или перекрытий

Дальше мы подробнее расскажем обо всех этих случаях.

Коэффициент уплотнения при транспортировке

Представьте, что самосвал везет 6 м³ щебня с карьера на объект заказчика. В пути ему попадаются ямы и выбоины. Под воздействием вибрации зерна щебня уплотняются, объем сокращается до 5,45 м³. Это называется утряской материала.

Как же убедиться в том, что на объект привезли то количество товара, которое указано в документах? Для этого нужно знать конечный объем материала (5,45 м³) и коэффициент уплотнения (для щебня он равен 1,1). Эти две цифры перемножаются, и получается начальный объем – 6 кубов. Если он не совпадает с тем, что написано в документах, значит мы имеем дело не с утряской щебня, а с недобросовестным продавцом.

Коэффициент уплотнения при засыпке ям

В строительстве есть такое понятие как усадка. Грунт или любой другой сыпучий материал уплотняется и уменьшается в объеме под действием собственного веса или давлением различных конструкций (фундамента, тротуарных плит). Процесс усадки нужно обязательно учитывать при засыпке канав, котлованов. Если этого не сделать, через некоторое время образуется новая яма.

Чтобы заказать необходимое количество материала для засыпки, нужно знать объем ямы. Если вам известна ее форма, глубина и ширина, можете воспользоваться для расчета нашим калькулятором. После этого полученную цифру нужно умножить на насыпную плотность материала и его коэффициент уплотнения.

При засыпке правильно рассчитанного материала в яму может получиться холмик. Дело в том, что в естественных условиях усадка происходит за определенный промежуток времени. Ускорить процесс можно с помощью трамбовки. Ее проводят вручную или с помощью специальных механизмов.

Коэффициент уплотнения в строительстве

Наверное, вам известны случаи, когда в зданиях сразу после постройки появлялись трещины. А ямы на новых дорогах или провалившаяся тротуарная плитка на дорожках и во дворах? Это случается, если неправильно рассчитать усадку грунта и не предпринять соответствующие меры по ее устранению.

Чтобы знать усадку, используется коэффициент уплотнения. Он помогает понять, насколько утрамбуется тот или иной грунт в определенных условиях. Например, под давлением веса здания, плитки или асфальта.

Некоторые грунты имеют настолько сильную усадку, что их приходится замещать. Другие виды перед строительством специально трамбуют.

Как узнать коэффициент уплотнения

Легче всего взять данные о коэффициенте уплотнения из ГОСТов. Они рассчитаны для разных видов материала.

В лабораторных условиях коэффициент уплотнения определяют следующим образом:

  • Измеряют общую или насыпную плотность материала. Для этого измеряют массу и объем образца, вычисляют их соотношение
  • Затем пробу встряхивают или прессуют, измеряют массу и объем, после чего определяют максимальную плотность
  • По соотношению двух показателей вычисляют коэффициент

Документы указывают усредненные значения коэффициента уплотнения. Показатель может меняться в зависимости от различных факторов. Приведенные в таблице цифры достаточно условные, но они позволяют рассчитать усадку больших объемов материала.

На значение коэффициента уплотнения влияют:

  • Особенности транспорта и способа перевозки
    Если материал транспортируют по выбоинам или железной дороге, он уплотняется сильнее, чем при перевозке по ровной трассе или морю
  • Гранулометрический состав (размеры, формы зерен, их соотношение)
    При неоднородном составе материала и наличии лещадных частиц (плоской или игловидной форм) коэффициент будет ниже. А при наличии большого количества мелких частиц – выше
  • Влажность
    Чем больше влажность, тем меньше коэффициент уплотнения
  • Способ трамбовки
    Если материал утрамбовывают вручную, он уплотняется хуже, чем после применения вибрирующих механизмов
  • Насыпная плотность
    Коэффициент уплотнения напрямую связан с показателем насыпной плотности. Как мы уже сказали, в процессе трамбовки или транспортировки плотность материала меняется, так как становится меньше пустот между частицами. Поэтому насыпная плотность во время отгрузки в автомобиль на карьере и после прибытия к заказчику разная. Эту разницу можно высчитать и проверить как раз благодаря коэффициенту уплотнения.
    Подробнее об этом вы можете прочитать на странице Насыпная плотность сыпучих материалов

Также вы можете посмотреть конкретные показатели для следующих материалов:

Коэффициент уплотнения – это важный показатель, помогающий узнать, сколько сыпучего материала заказывать. Он дает возможность проконтролировать, действительно ли вам привезли заказанный объем. Показатель нужно знать строителям при возведении зданий, чтобы правильно рассчитать нагрузку на основание.

Как достичь требуемого коэффициента уплотнения?

Часто на строительной площадке возникает проблема с уплотнением насыпных грунтов (автодорожные насыпи, обратная засыпка фундаментов, грунтовые подготовки под фундаменты).

Данная проблема заключается в том, что не удается достичь требуемого коэффициента уплотнения грунта.

Увеличить коэффициент уплотнения можно следующими методами:

1. Изменить влажность грунта. 

Грунт необходимо уплотнять при оптимальной влажности грунта (п.7.11 СП 45.13330.2017). Оптимальную влажность грунта можно определить  в грунтовой лаборатории.

Немного увлажните или подсушите уплотняемый грунт на строительной площадке. А затем снова уплотните грунтоуплотняющими машинами.

2. Уменьшите высоту отсыпаемого слоя грунта

3. Увеличьте количество проходок грунтоуплотняющей машины по одному следу (катки, трамбовки, виброплощадки)

4. Увеличить мощность грунтоуплотняющей машины. 

Требуемый коэффициент уплотнения грунта

Коэффициент уплотнения и разрыхления ПГС

Сыпучие строительные смеси применяются при возведении сооружений. В процессе транспортировки, разгрузки и хранения отсыпанный материал уплотняется. Для расчета расхода принимают коэффициент уплотнения ПГС.

Технические виды строительных смесей

ПГС — смесь из песка и гравия. Используется для строительных работ. Состав смеси регламентируется ГОСТом 23735-2014.

ЩПС — смесь из щебня, гравия, песка естественной добычи. Производится по ГОСТу 25607-2009.

ЩПС из дробленых бетонов — изготавливаются по техническому регламенту ГОСТа 32495-2013.

В оценке качества смесей учитывают:

  • общие показатели составного материала;
  • свойства песка;
  • свойства щебня, гравия.

Сыпучие материалы проверяют по плотности, прочности, содержанию пыли и сора, включениям опасных веществ.

Происхождение и пути добычи строительных смесей

Песчано-гравийные смеси добывают из гравийно-песчаных, валуйно-гравийно-песчаных пород.

В состав ПГС входят:

  • песок крупностью 0,05–5 мм;
  • гравий 5–70 мм;
  • валуны свыше 70 мм.

Наличие гравия колеблется от 10-90% от общей массы.

Производят два вида песчано-гравийной смеси:

  • природная смесь, добываемая и поставляемая без переработки;
  • обогащенная смесь добывается природным путем, обогащается добавкой или извлечением песчано-гравийной составляющей.

Добычу ПГС производят из оврагов, озер и морей. Морской материал самый чистый. В остальных могут быть примеси из глины, известняка, сора.

В состав ЩПС естественного происхождения входит щебень основной (40–80 мм, 80–120 мм) и расклинивающей фракции (5–20 мм, 5–40 мм).

Дробимость щебня из осадочных пород, а также щебня из изверженных пород имеет марку 400 и 600 соответственно.

ЩПС из дробленого бетона, железобетона включает:

  • неорганическую щебеночную дробь крупностью от 5 мм;
  • неорганический песок, получаемый из дробимого бетонного щебня.

Материалы являются дробимыми остатками при разрушении бетонных или железобетонных строительных конструкций.

Область применения

ПГС применяют при возведении оснований под автомобильные дороги, подушек фундаментов, обратной засыпке котлованов и отсыпке насыпей.

В строительстве железных дорог применяют балластные смеси по ГОСТу 7394-85, состоящие из песка и гравия либо только из гравия.

ЩПС естественных пород применяют в дорожном строительстве.

ЩПС из дробленых строительных материалов используются в производстве бетонов, а также в подсыпках и основаниях при возведении зданий.

Порядок производства работ

Сыпучие материалы во время строительства укладываются на величину, равную произведению размера самых крупных частиц, умноженному на 1,5. Один слой укладки должен быть не менее 10 см.

Песок должен увлажняться в случае отсыпки основания насухо.

Расход воды зависит от температурных условий.

Методы уплотнения грунта при устройстве оснований из ПГС:

  • уплотнение поверхностного слоя тяжелыми трамбовками;
  • применение вибрационных машин;
  • использование трамбовок;
  • глубинное гидровиброуплотнение.

Контроль плотности при трамбовке производят на величину 1/3 уплотняемого слоя, на толщину не менее 8 см.

Коэффициенты уплотнения

Средний коэффициент естественного уплотнения сыпучих смесей имеет значение 1,2, т. е. объем уплотненной смеси уменьшится в 1,2 раза.

По ГОСТу максимальный коэффициент уплотнения отсева при транспортировке равен 1,1.

Коэффициенты уплотнения при строительных работах приведены в СНиП «Земляные сооружения, основания и фундаменты» таблица 6. Песок имеет k=0,92÷0,98.

При дорожном строительстве, коэффициенты к материалам применяются согласно СНиП «Автомобильные дороги». Для ПГС оптимального состава с маркой щебня 800 коэффициент запаса уплотнения принимается 1,25–1,3. При марке щебня 600÷300 — коэффициент запаса будет 1,1–1,5. Коэффициент запаса шлака принимается 1,3–1,5.

Объемы материалов в смете закладывают с учетом приведенных коэффициентов.

Приборы для измерения плотности грунта

При послойной укладке грунта, контролируется плотность каждого уровня. С помощью плотномера или пенетрометра можно проверить трамбовку песка на стройке.

Плотномер электромагнитный — электронный прибор, измеряющий плотность посредством электромагнитного излучения. Он способен выдать характеристики гранулометрии, влажности, определить пределы пластичности и текучести.

Динамический электронный плотномер грунта работает под динамической нагрузкой от удара равным 5 кг. Прибор определяет модуль упругости, нагрузки, деформации.

Пенетрометр — механический прибор, определяет плотность на основании прилагаемого давления. Результат измерений отображается на шкале прибора.

Сметный учет

Объем материалов на строительство вносят в сметный калькулятор с учетом уплотнения. Применяется коэффициент относительного уплотнения и разрыхления (коэффициент расхода).

Расход песка с требуемым коэффициентом уплотнения при обратной засыпке от 0,9 до 1,0, рассчитывается с учетом относительного коэффициента уплотнения от 1,0 до 1,1 соответственно, для шлаков 1,13–1,47.

Коэффициент относительного уплотнения для горных пород при плотности 1,9 – 2,2 г/см куб, равен 0,85–0,95.

Хранение сыпучих материалов

Щебень, песок, щебеночно-песчаные смеси хранят раздельно друг от друга. Применяют меры по защите складируемых материалов от засорения. Оптимальный вариант — хранение на закрытом складе. Там материалы защищены от ветра и осадков.

При длительном складировании происходит уплотнение песка при хранении, также щебня и ПГС.

Норма естественной убыли материалов регламентируется стандартом РДС 82-2003.

Нормы убыли при хранении навалом измеряются процентами от массы:

  • щебень, гравий — 0,4%;
  • песок — 0,7%;
  • ПГС — 0,45%;
  • отсев — 0,75%.

При отгрузке материалов учитываются данные показатели.

Песчано-гравийная смесь востребованный материал. Он используется в промышленном, дорожном, дачном строительстве. Информация из статьи поможет правильно рассчитать потребность в данном сырье.

таблица расчет плотности, ПГС при трамбовке глины, определение при обратной засыпке грунта

Коэффициент уплотнения необходимо определять и учитывать не только в узконаправленных сферах строительства. Специалисты и обычные рабочие, выполняющие стандартные процедуры использования песка, постоянно сталкиваются с необходимостью определения коэффициента.

Коэффициент уплотнения активно используется для определения объема сыпучих материалов, в частности песка,
но тоже относится и к гравию, грунту. Самый точный метод определения уплотнения – это весовой способ.

Широкое практическое применение не обрел из-за труднодоступности оборудования для взвешивания больших объемов материала или отсутствия достаточно точных показателей. Альтернативный вариант вывода коэффициента – объемный учет.

Единственный его недостаток заключается в необходимости определения уплотнения на разных стадиях. Так рассчитывается коэффициент сразу после добычи, при складировании, при перевозке (актуально для автотранспортных доставок) и непосредственно у конечного потребителя.

Факторы и свойства строительного песка

Коэффициент уплотнения – это зависимость плотности, то есть массы определенного объема, контролируемого образца к эталонному стандарту.

Эталонные показатели плотности выводятся в лабораторных условиях. Характеристика необходима для проведения оценочных работ о качестве выполненного заказа и соответствии требованиям.

Для определения качества материала используются нормативные документы, в которых прописано эталонные значения. Большинство предписаний можно найти в ГОСТ 8736-93, ГОСТ 7394-85 и 25100-95 и СНиП 2.05.02-85. Дополнительно может оговариваться в проектной документации.

В большинстве случаев коэффициент уплотнения составляет 0,95-0,98 от нормативного значения.

Вид работ Коэффициент уплотнения
Повторная засыпка котлованов 0,95
Заполнение пазух 0,98
Обратное наполнение траншей 0,98
Ремонт траншей вблизи дорог с инженерными сооружениями 0,98 – 1

«Скелет» – это твердая структура, которая имеет некоторые параметры рыхлости и влажности. Объемный вес обычно рассчитывается на основании взаимозависимости массы твердых частиц в песке, и той, которую бы приобрела смесь, если бы вода занимала всё пространство грунта.

Лучшим выходом для определения плотности карьерного, речного, строительного песка является проведение лабораторных исследований на основании нескольких проб взятых у песка. При обследовании грунт поэтапно уплотняют и добавляют влагу, это продолжается до достижения нормированного уровня влажности.

После достижения максимальной плотности определяется коэффициент.

Коэффициент относительного уплотнения

Выполняя многочисленные процедуры по добыванию, транспортировке, хранению, очевидно, что насыпная плотность несколько меняется. Это связано с трамбовкой песка при перевозке, длительное нахождение на складе, впитывание влаги, изменение уровня рыхлости материала, величины зерен.

В большинстве случаев проще обойтись относительным коэффициентом – это отношение между плотностью «скелета» после добычи или нахождения на складе к той, которую он приобретает доходя до конечного потребителя.

Зная норму какой характеризуется плотность при добыче, указывается производителем, можно без проведения постоянных обследований определять конечный коэффициент грунта.

Информация об этом параметре должна быть указана в технической, проектной документации. Определяется путем расчетов и соотношения начальных и конечных показателей.

Плотность

Такой метод подразумевает регулярные поставки от одного производителя и отсутствие изменений в каких-либо переменных. То есть транспортировка происходит одинаковым методом, карьер не изменил свои качественные показатели, длительность пребывания на складе приблизительно одинаковая и т.д.

Для выполнения расчетов необходимо учитывать такие параметры:

  • характеристики песка, основными считаются прочность частиц на сжатие, величина зерна, слеживаемость;
  • определение максимальной плотности материала в лабораторных условиях при добавлении необходимого количества влаги;
  • насыпной вес материала, то есть плотность в естественной среде расположения;
  • тип и условия транспортировки. Наиболее сильная утряска у автомобильного и железнодорожного транспорта. Песок менее подвергается уплотнению при морских доставках;
  • погодные условия при перевозке грунта. Нужно учитывать влажности и вероятность воздействия со стороны минусовых температур.

Как посчитать плотность во время добычи из котлована

В зависимости от типа котлована, уровня добычи песка, его плотность также изменяется. При этом важное значение играет климатическая зона, в который проводятся работы по добыче ресурса. Документами определяется следующие коэффициенты в зависимости от слоя и региона добычи песка.

Уровень земляного полотна Глубина слоя, м С усовершенствованным покрытием Облегченные или переходные покрытия
Климатические зоны
I-III IV-V II-III IV-V
Верхний слой Менее 1,5 0,95-0,98 0,95 0,95 0,95
Нижний слой без воды Более 1,5 0,92-0,95 0,92 0,92 0,90-0,92
Подтапливаемая часть подстилающего слоя Более 1,5 0,95 0,95 0,95 0,95

В дальнейшем на этом основании можно рассчитать плотность, но нужно учесть все воздействия на грунт, которые меняют его плотность в одном или другом направлении.

При трамбовке материала и обратной засыпке

Обратная засыпка – это процесс заполнения котлована, предварительно вырытого, после возведения необходимых строений или проведения определенных работ. Обычно засыпается грунтом, но кварцевый песок используется также часто.

Трамбовка считается необходимым процессом при этом действии, так как позволяет вернуть прочность покрытию.

Для выполнения процедуры необходимо иметь специальное оборудование. Обычно используется ударные механизмы или те, что создают давление.

Обратная засыпка

В строительстве активно применяются виброштамп и вибрационная плита различного веса и мощности.

Вибрационная плита

Коэффициент уплотнения также зависит от трамбовки, она выражена в виде пропорции. Это необходимо учитывать, так как при увеличении уплотнения одновременно уменьшается объемная площадь песка.

Стоит учитывать, что все виды механического, наружного уплотнения способны воздействовать только на верхний слой материала.

Основные виды и способы уплотнения и их влияние на верхние слои грунта представлены в таблице.

Тип уплотнения Количество процедур по методу Проктора 93% Количество процедур по методу Проктора 88% Максимальная толщина обрабатываемого слоя, м
Ногами 3 0,15
Ручной штамп (15 кг) 3 1 0,15
Виброштамп (70 кг) 3 1 0,10
Виброплита – 50 кг 4 1 0,10
100 кг 4 1 0,15
200 кг 4 1 0,20
400 кг 4 1 0,30
600 кг 4 1 0,40

Для определения объема материала для засыпки необходимо учесть относительный коэффициент уплотнения. Это связано с изменением физических свойств котлована после вырывания песка.

При заливке фундамента необходимо знать правильные пропорции песка и цемента. Перейдя по ссылке ознакомитесь с пропорциями цемента и песка для фундамента.

Цемент является специальным сыпучим материалом, который по своему составу представляет минеральной порошок. Тут о различных марках цемента и их применении.

При помощи штукатурки увеличивают толщину стен, из за чего увеличивается их прочность. Здесь узнаете, сколько сохнет штукатурка.

Извлекая карьерный песок тело карьера становится более рыхлым и поэтапно плотность может несколько уменьшаться. Необходимо проводить периодические проверки плотности с помощью лаборатории, особенно при изменении состава или расположения песка.

Более подробно о уплотнении песка при обратной засыпке смотрите на видео:

Как определить плотность песчаного слоя при транспортировке

Транспортировка сыпучих материалов имеет некоторые особенности, так как вес достаточно большой и наблюдается изменение плотности ресурсов.

В основном песок транспортируют при помощи автомобильного и железнодорожного транспорта, а они вызывают встряхивание груза.

Перевозка автомобилем

Постоянные вибрационные удары на материалы воздействуют на него подобно уплотнению от виброплиты. Так постоянное встряхивание груза, возможное воздействие дождя, снега или минусовых температур, увеличенное давление на нижний слой песка – все это приводит к уплотнению материала.

Причем длина маршрута доставки имеет прямую пропорцию с уплотнением, пока песок не дойдет до максимально возможной плотности.

Морские доставки меньше подвержены влиянию вибраций, поэтому песок сохраняет больший уровень рыхлости, но некоторая, небольшая усадка все равно наблюдается.

Перевозка морским транспортом

Для расчета количества строительного материала необходимо относительный коэффициент уплотнения, который выводится индивидуально и зависит от плотности в начальной и конечной точке, умножить на требуемый объем, внесенный в проект.

Как рассчитать в условиях лаборатории

Необходимо взять песок из аналитического запаса, порядка 30 г. Просеять сквозь сито с решеткой в 5 мм и высушить материал до приобретения постоянного значения веса. Приводят песок к комнатной температуре. Сухой песок следует перемешать и разделить на 2 равные части.

Далее необходимо взвесить пикнометр и заполнить 2 образца песком. Далее в таком же количестве добавить в отдельный пикнометр дисциллированной воды, приблизительно 2/3 всего объема и снова взвесить. Содержимое перемешивается и укладывается в песчаную ванну с небольшим наклоном.

Для удаления воздуха необходимо прокипятить содержимое 15-20 минут. Теперь необходимо охладить до комнатной температуры пикнометр и отереть. Далее доливают до отметки дисциллированной воды и взвешивают.

Далее переходят к расчетам. Методика, которая помогает определить плотность и основная формула:

P = ((m – m1)*Pв) / m-m1+m2-m3, где:

  • m – масса пикнометра при заполнении песком, г;
  • m1 – вес пустого пикнометра, г;
  • m2 – масса с дисциллированной водой, г;
  • m3 – вес пикнометра с добавлением дисциллированной воды и песка, при этом после избавления от пузырьков воздуха
  • Pв – плотность воды


При этом проводится несколько замеров, исходя из количества предоставленных проб на проверку. Результаты не должны быть с расхождением более 0,02 г/см3. В случае большого расхода полученных данных выводится средне арифметическое число.

Смета и подсчеты материалов, их коэффициентов – это основная составляющая часть строительства любых объектов, так как помогает понять количество необходимого материала, а соответственно затраты.

Для правильного составления сметы необходимо знать плотность песка, для этого используется информация предоставленная производителем, на основании обследований и относительный коэффициент уплотнения при доставке.

Из-за чего изменяется уровень сыпучей смеси и степень уплотнения

Песок проходит через трамбовку, не обязательно специальную, возможно в процессе перемещения. Посчитать количество материала полученного на выходе достаточно сложно, учитывая все переменные показатели. Для точного расчета необходимо знать все воздействия и манипуляции, проведенные с песком.

Конечный коэффициент и степень уплотнения зависит от разнообразных факторов:

  • способ перевозки, чем больше механических соприкосновений с неровностями, тем сильнее уплотнение;
  • длительность маршрута, информация доступна для потребителя;
  • наличие повреждений со стороны механических воздействий;
  • количество примесей. В любом случае посторонние компоненты в песке придают ему больший или меньший вес. Чем чище песок, тем ближе значение плотности к эталонному;
  • количество попавшей влаги.

Сразу после приобретения партии песка, его следует проверить.

Какие пробы берут для определения насыпной плотности песка для строительства

Нужно взять пробы:

  • для партии менее 350 т – 10 проб;
  • для партии 350-700 т – 10-15 проб;
  • при заказе выше 700 т – 20 проб.

Полученные пробы отнести в исследовательское учреждение для проведения обследований и сравнения качества с нормативными документами.

Заключение

Необходимая плотность сильно зависит от типа работ. В основном уплотнение необходимо для формирования фундамента, обратной засыпки траншей, создания подушки под дорожное полотно и т.д. Необходимо учитывать качество трамбовки, каждый вид работы имеет различные требования к уплотнению.

В строительстве автомобильных дорог часто используется каток, в труднодоступных для транспорта местах используется виброплита различной мощности.

Так для определения конечного количества материала нужно закладывать коэффициент уплотнения на поверхности при трамбовке, данное отношение указывается производителем трамбовочного оборудования.

Всегда учитывается относительный показатель коэффициента плотности, так как грунт и песок склонны менять свои показатели исходя из уровня влажности, типа песка, фракции и других показателей.

Уплотнение почвы - методы испытаний и влияние на свойства почвы

Что такое уплотнение почвы?

Уплотнение почвы - это прижимание частиц почвы друг к другу механическими методами. Воздух во время уплотнения почвы вытесняется из пустот в почвенной массе, и поэтому плотность массы увеличивается.

Уплотнение грунта производится для улучшения инженерных свойств грунта. Уплотнение грунта требуется при строительстве земляных дамб, насыпей каналов, автомобильных дорог, взлетно-посадочных полос и многих других сооружений.

Методы определения уплотнения грунта

Стандартный тест Проктора на уплотнение грунта

Для оценки степени уплотнения почвы и содержания воды, требуемого в поле, испытания на уплотнение проводятся на той же почве в лаборатории. Тест показывает зависимость между содержанием воды и плотностью в сухом состоянии.

Содержание воды, при котором достигается максимальная плотность в сухом состоянии, рассчитывается по соотношению, полученному в результате испытаний.Проктор использовал стандартную форму с внутренним диаметром 4 дюйма и эффективной высотой 4,6 дюйма при объеме 1/30 кубического фута.

Форма имела съемную опорную плиту и съемную манжету высотой 2 дюйма наверху. Грунт утрамбовывался в опалубке в 3 слоя, на каждый слой было нанесено 25 ударов 5,5-килограммовой трамбовкой на высоту 12 дюймов.

IS: 2720 часть VII рекомендует по существу те же спецификации, что и в стандартном тесте Проктора, с некоторыми незначительными изменениями.Рекомендуемая форма имеет диаметр 100 мм, высоту 127,3 мм и объем 1000 мл.

Рекомендуемая трамбовка массой 2,6 кг со свободным падением 310 мм и диаметром забоя 50 мм. Грунт уплотняется в три слоя. Формы крепится к съемной опорной плите. Высота воротника 60 мм.

Методика Проктора на уплотнение грунта

Для испытания берется около 3 кг воздушно-сухой почвы. Его смешивают с 8% -ным содержанием воды и заливают в форму в три слоя, нанося по 25 ударов в каждый слой.Берется объем формы и масса уплотненного грунта. Насыпная плотность рассчитывается по наблюдениям. Репрезентативный образец помещается в печь для определения содержания воды. Плотность в сухом состоянии определяется исходя из объемной плотности и содержания воды. Эту же процедуру повторяют, увеличивая содержание воды.

Представление результатов теста Проктора

Кривая уплотнения

Кривая уплотнения строится между содержанием воды по оси абсцисс и соответствующей плотностью в сухом состоянии по оси ординат.Наблюдается, что плотность в сухом состоянии первоначально увеличивается с увеличением содержания воды до достижения максимальной плотности.

При дальнейшем увеличении содержания воды сухая плотность уменьшается. Содержание воды, соответствующее максимальной плотности в сухом состоянии, известно как оптимальное содержание воды (O.W.C) или оптимальное содержание влаги (O.M.C).

При содержании воды выше оптимального, дополнительная вода снижает плотность в сухом состоянии, поскольку занимает пространство, которое могло быть занято твердыми частицами.

Для данного содержания воды теоретическая максимальная плотность получается в соответствии с условием отсутствия воздушных пустот (степень насыщения 100%). Теоретическая максимальная плотность также известна как насыщенная сухая плотность. Линия, показывающая теоретическую максимальную плотность, может быть нанесена вместе с кривой уплотнения. Она известна как линия нулевой воздушной пустоты.

Модифицированный тест Проктора на уплотнение грунта

Модифицированный тест Проктора был разработан для представления более тяжелого уплотнения, чем в стандартном тесте Проктора.Тест используется для моделирования полевых условий, в которых используются тяжелые катки. Этот тест был стандартизирован Американской ассоциацией государственных служащих автомобильных дорог и поэтому также известен как модифицированный тест AASHO.

В этом случае использованная форма такая же, как и в тесте Std Proctor. Однако применяемый трамбовщик намного тяжелее и имеет большее падение, чем в тесте Std Proctor. Его масса составляет 4,89 кг, а свободное падение - 450 мм. Грунт уплотняется в пять равных слоев, каждому слою дается 25 ударов.Усилие уплотнения в модифицированном тесте Проктора в 4,56 раза больше, чем в тесте Std Proctor. В остальном процедура такая же

Содержание воды

При низком содержании воды почва становится жесткой и более устойчивой к уплотнению. По мере увеличения содержания воды частицы почвы смазываются. Почвенная масса становится более обрабатываемой, а частицы плотнее укладываются. Сухая плотность почвы увеличивается с повышением влажности до О.M.C. достигается.

Величина уплотнения

Увеличение усилия уплотнения в определенной степени увеличит плотность в сухом состоянии при более низком содержании воды.

Тип почвы

Достигаемая плотность в сухом состоянии зависит от типа почвы. ОС и сухая плотность для разных почв различаются

Метод уплотнения

Достигаемая плотность в сухом состоянии зависит от метода уплотнения

Влияние уплотнения на свойства грунта

1.Влияние уплотнения на структуру почвы

Грунты, уплотненные при содержании воды ниже оптимального, обычно имеют флокулированную структуру. Грунты, уплотненные при влажности более оптимальной, обычно имеют дисперсную структуру.

2. Влияние уплотнения грунта на проницаемость

Проницаемость почвы зависит от размера пустот. Проницаемость почвы снижается с увеличением содержания воды на сухой стороне оптимального содержания воды.

3. Отек

4. Давление поровой воды

5. Усадка

6. Сжимаемость

7. Соотношение напряжения и деформации

8. Прочность на сдвиг

Методы уплотнения грунта, используемые на поле

В области уплотнения почв используются несколько методов. Выбор метода будет зависеть от типа почвы, требуемой максимальной плотности в сухом состоянии и экономических соображений. Обычно используются методы

1.Тамперс

2. Катки

3. Вибрационные катки

Уплотнение зависит от следующих факторов:

  • Контактное давление

  • Количество проходов

  • Толщина слоя

  • Скорость ролика

Типы роликов

  • Ролики гладкие

  • Катки с пневматическими шинами

  • Опорные катки

Контроль уплотнения почвы

Контроль уплотнения осуществляется путем измерения плотности в сухом состоянии и содержания воды в уплотненном грунте на поле

Плотность в сухом состоянии измерена методом корончатой ​​фрезы и методом замены песка

Для измерения содержания воды используются метод сушки в печи, метод песчаной бани, метод карбида кальция и т. Д.Для этого также используется игла Проктора.

Подробнее:

Различные типы оборудования для уплотнения грунта - типы катков

Факторы, влияющие на уплотнение почвы - влияние на различные типы почвы

Тест Проктора на уплотнение почвы - инструменты, процедуры и результаты

.

Факторы, влияющие на уплотнение почвы

Существуют различные факторы, влияющие на уплотнение почвы. Обсуждается влияние этих факторов на уплотнение различных типов почв.

Уплотнение почвы - это процесс уплотнения почвы за счет вытеснения воздуха из пор путем приложения внешней нагрузки к почве при разном содержании влаги.

Факторы, влияющие на уплотнение почвы - влияние на различные типы почвы

Следуя различным факторам, влияющим на уплотнение почвы:

  • Содержание воды
  • Величина уплотнения
  • Типы грунтов
  • Способы уплотнения грунта

Влияние влажности на уплотнение почвы

При низком содержании воды почва становится жесткой и более устойчивой к уплотнению.По мере увеличения содержания воды частицы почвы смазываются. Почвенная масса становится более обрабатываемой, а частицы плотнее укладываются.

Сухая плотность почвы увеличивается с увеличением содержания воды до достижения оптимального содержания воды. На этом этапе воздушные пустоты достигают примерно постоянного объема. При дальнейшем увеличении содержания воды воздушные пустоты не уменьшаются, но общие пустоты (воздух плюс вода) увеличиваются, а плотность в сухом состоянии уменьшается.

Таким образом достигается более высокая сухая плотность до оптимального содержания воды за счет вытеснения воздушных пустот из пустот почвы.После достижения оптимального содержания воды становится труднее вытеснить воздух и еще больше уменьшить воздушные пустоты.

Влияние содержания воды на уплотнение почвы также можно объяснить с помощью теории двойного электрического слоя. При низком содержании воды силы притяжения в слое адсорбированной воды велики, и имеется большее сопротивление движению частиц.

По мере увеличения содержания воды двойной электрический слой расширяется и силы отталкивания между частицами увеличиваются.Частицы легко скользят друг по другу и плотно упаковываются. Это приводит к более высокой плотности в сухом состоянии.

Объем уплотнения

Уплотнение почвы увеличивается с увеличением усилия уплотнения. С увеличением усилия уплотнения оптимальное содержание воды, необходимое для уплотнения, также уменьшается. При содержании воды меньше оптимального эффект повышенного уплотнения преобладает.

При содержании воды выше оптимального объем воздушных пустот становится почти постоянным, и влияние повышенного уплотнения на почву незначительно.

Следует отметить, что максимальная плотность в сухом состоянии не увеличивается с увеличением усилия уплотнения. При некотором увеличении уплотняющего усилия увеличение плотности в сухом состоянии становится все меньше и меньше. Наконец, достигается стадия, после которой не происходит дальнейшего увеличения плотности в сухом состоянии с увеличением усилия уплотнения.

Линия оптимумов, соединяющая пики кривых уплотнения различных усилий уплотнения, следует общей тенденции отсутствия пустот.Эта линия соответствует воздушным пустотам около 5%.

Тип почвы:

Уплотнение почвы зависит от типа почвы. Максимальная сухая плотность и оптимальная влажность для разных почв показаны на рисунке. Как правило, крупнозернистые грунты можно уплотнять до более высокой сухой плотности, чем мелкозернистые грунты.

При добавлении даже небольшого количества мелочи к крупнозернистой почве почва достигает гораздо более высокой плотности в сухом состоянии при том же усилии уплотнения.

Однако, если количество мелких частиц увеличивается до значения, большего, чем требуется для заполнения пустот крупнозернистого грунта, максимальная сухая плотность уменьшается. Хорошо гранулированный песок имеет гораздо более высокую плотность в сухом состоянии, чем плохо гранулированный грунт.

Связные почвы имеют большие воздушные пустоты. Эти почвы достигают относительно более низкой максимальной сухой плотности по сравнению с несвязными почвами. Такие почвы требуют больше воды, чем несвязные почвы, и поэтому оптимальное содержание воды высокое.Тяжелые глины с очень высокой пластичностью имеют очень низкую плотность в сухом состоянии и очень высокое оптимальное содержание воды.

Метод уплотнения грунта:

Достигаемая плотность в сухом состоянии зависит не только от усилия уплотнения, но и от метода уплотнения. При одинаковом усилии уплотнения плотность в сухом состоянии будет зависеть от того, использует ли метод уплотнения действие замешивания, динамическое воздействие или статическое воздействие.

Например, в Гарвардском миниатюрном испытании на уплотнение почва уплотняется за счет замешивания, и, следовательно, полученная кривая уплотнения отличается от кривой, полученной в других традиционных испытаниях, в которых прикладывается равное усилие уплотнения.

Различные методы построения кривой уплотнения дают свои собственные кривые уплотнения. Следовательно, линии оптимумов тоже разные.

Рис. Кривые уплотнения для разных грунтов

Подробнее:

Различные типы оборудования для уплотнения грунта - типы катков

Уплотнение грунта - методы испытаний и влияние на свойства грунта

Тест Проктора на уплотнение почвы - инструменты, процедуры и результаты

.

Уплотнение почвы | UMN внутренний номер

Рисунок 24: Тракторы с гусеницами (фон) и шинами.

Любое оборудование, будь то гусеницы или шины, может создавать уплотнение. Выбор оборудования, обеспечивающего наименьшее уплотнение, зависит от нескольких факторов.

Тракторы

Припаркованный гусеничный трактор оказывает давление на почву приблизительно от 4 до 8 фунтов на квадратный дюйм в зависимости от ширины, длины и веса трактора. Этот фунт на квадратный дюйм изменяется в зависимости от расположения роликов промежуточных колес, жесткости пружины в точках крепления, жесткости гусеницы, динамической передачи веса при нагрузке на дышло и т. Д.(Рисунок 24).

Радиальные шины оказывают давление на 1-2 фунта выше, чем их надлежащее давление в шинах. Например, если радиальная шина накачана до 6 фунтов на квадратный дюйм, шина оказывает давление на почву от 7 до 8 фунтов на квадратный дюйм. Это давление также зависит от размера проушины, жесткости шины и нагрузки на дышло.

Шины с диагональным кордом старого образца, накачанные до 6–8 фунтов на квадратный дюйм, не могут эффективно работать и легко изнашиваются при таком низком давлении в шинах. Следовательно, они должны быть накачаны до 20-25 фунтов на квадратный дюйм.

Как управлять уплотнением почвы

Чтобы сохранить уплотнение почвы в зоне плуга, поддерживайте радиальное давление в шинах около 10 фунтов на квадратный дюйм.В зависимости от размера шин вам, возможно, придется добавить сдвоенные колеса для достижения этой цели. Проконсультируйтесь с вашим местным дилером по шинам, чтобы определить надлежащее давление в шинах.

Исследование: Тракторное уплотнение
Рисунок 25: Уплотнение почвы полноприводными и гусеничными тракторами при различных тяговых нагрузках. Исследование

Iowa показало, что небольшие тракторы, оборудованные гусеницами или радиальными шинами, создают уплотнение в верхних слоях на 5–8 дюймов. Однако ниже этой глубины эффект уплотнения был незначительным.

На рис. 25 показана корреляция между давлением в шинах и уплотнением почвы в исследовании, проведенном Университетом штата Огайо. Эффект уплотнения измерялся на глубине 20 дюймов на илистом суглинке (ширина шин составляла примерно 28 дюймов) для четырех различных сценариев. Они сравнили

  • Трактор John Deere 8870 с сдвоенными баками 710 / 70R38, правильно накачанными до 6 и 7 фунтов на квадратный дюйм (спереди и сзади)
  • Тот же трактор John Deere с шинами, накачанными до 24 фунтов на квадратный дюйм
  • Cat Challenger 65 с резиновыми гусеницами 24 дюйма
  • Cat Challenger 75 с резиновыми гусеницами 36 дюймов

По физическим свойствам почвы трактор с правильно накачанными шинами был признан лучшим, за ним следуют 36-дюймовые и 24-дюймовые гусеницы.Наибольшее уплотнение вызвал трактор с чрезмерно накачанными шинами. Относительные рейтинги были одинаковыми для автомобилей без груза и с буксируемым грузом (40-футовый культиватор).

Комбайны
Рисунок 26: Уменьшение пористости почвы по глубине при разном давлении почвы.

Общая нагрузка на ось тяжелого полевого оборудования, такого как зерновозы или комбайны, почти одинакова независимо от того, используются ли в оборудовании гусеницы или шины. Гусеницы улучшают тягу и управляемость в поле, но зерновоз 25 т на ось по-прежнему создает уплотнение под поверхностью, независимо от того, есть ли у него гусеницы или шины.

Исследование: уплотнение комбайна

Другой исследовательский проект в Огайо тестировал зерновоз на 1200 бушелей в сравнении с комбайном John Deere 9600 с другим расположением гусениц. Сдвоенные шины зернового прицепа, безусловно, вызывают наихудшее уплотнение. Результаты (Рисунок 26), от худшего до минимального уплотнения:

.
  1. Зерновоз с двумя шинами.

  2. Комбайн с одинарными шинами 30,5L32 при давлении 34 фунта на квадратный дюйм.

  3. Комбайн с полугусеничной системой со средним показателем psi 10.

  4. Комбайн со сдвоенными шинами 18.4R38 при давлении 26 фунтов на квадратный дюйм.

  5. Комбайн с широкими шинами 68x50.0-32 с избыточным давлением 24 фунта на квадратный дюйм.

  6. Комбайн с такими же широкими шинами при правильном давлении 15 фунтов на квадратный дюйм.

Обратите внимание, что среднее расчетное давление полугусеницы на почву составляет около 10 фунтов на квадратный дюйм, но результаты, по-видимому, делают его равным шине с давлением от 26 до 30 фунтов на квадратный дюйм. В основном это происходит из-за направленного вниз давления со стороны направляющих колес.Исследователи предположили, что чем ниже давление накачки, тем лучше для пористости почвы.

.

Наука о уплотнении почвы

Когда вы смотрите на мотоблоки в своем парке, скорее всего, вы не думаете о них как о точных научных инструментах. Тем не менее, уплотнение почвы - это наука, и она требует определенной степени точности. Понимание того, что за этим стоит, может помочь вам повысить эффективность ваших рабочих мест.

Что за грязь?

Чтобы выбрать подходящее оборудование для вашей работы, вам нужно сначала кое-что узнать о почвах и о том, как они уплотняются.По словам Марка Конрарди, менеджера по продажам компании Wacker Corp., почву можно разделить на четыре основные группы: глина, ил, песок и гравий. «Самая важная характеристика - это размер частиц», - заявляет он.

Глины состоят из мельчайших частиц, размер которых обычно меньше 0,00024 дюйма, за которыми следуют ил, песок и гравий с размером частиц от 0,08 до 3 дюймов в диаметре. Все, что больше 3 дюймов, считается валуном.

«Глины и илы сгруппированы вместе как связные грунты на основании того факта, что [их частицы] имеют тенденцию к расслоению из-за своего небольшого размера.«Силы, которые удерживают их вместе, имеют молекулярную природу», - объясняет Конрарди. «Песок и гравий сгруппированы вместе как зернистые почвы, и силы, удерживающие их вместе, являются трением из-за их неровной и шероховатой текстуры поверхности».

Смешанные грунты содержат смесь как связных, так и гранулированных частиц. В случае смешанных грунтов анализ градации грунта может определить правильную классификацию и помочь в выборе машины, - говорит Франк Венцель, вице-президент по инженерным вопросам подразделения Stone Construction Equipment.

По словам Рона МакКаннелла из Weber Maschinentechnik GmbH, гранулированные и смешанные грунты с содержанием связного грунта менее 10–15% легко уплотняются с помощью виброплиты и трамбовки. Но для достижения высокой плотности должна быть смесь частиц различного размера, способная заполнить пустоты между крупными частицами. «Равномерно гранулированный грунт невозможно уплотнить», - отмечает он.

«Наиболее легко уплотняются почвы со сферическими и гладкими частицами», - продолжает он.«Грунты с частицами неправильной формы труднее уплотнять, но, с другой стороны, они обладают большей несущей способностью».

Способность уплотнять почву частично зависит от распределения частиц. «Почвы с почти таким же размером частиц, как мелкий песок, называются однофракционными почвами. Почвы с несколькими размерами частиц называются смешанными фракциями», - заявляет МакКаннелл. «Однофракционные грунты трудно уплотнять, поскольку пустоты заполняются очень небольшими количествами или отсутствием мелких частиц.Грунты из смешанных фракций могут быть хорошо уплотнены, так как есть более мелкие частицы, которые из-за вибрационного эффекта перемещаются в пустоты между более крупными частицами. Достигается высокая плотность и, как следствие, более высокая несущая способность ».

Нужные вещи

Когда вы узнаете тип почвы, на которой будете работать, вы сможете определить, какое оборудование лучше всего подходит для условий.

«Тип уплотнителя, который будет наиболее эффективным, определяется силами сцепления, которые проявляют две группы грунта», - говорит Конрарди.«Связным грунтам требуется определенная энергия удара, чтобы разрушить молекулярные связи и высвободить воздух и лишнюю воду, которые могут быть захвачены почвой».

Согласно Венцелю, типы машин, которые могут лучше всего использовать эту энергию, - это трамбовки или катки с опорными лапами, которые создают как высокую ударную нагрузку, так и необходимую силу срезания. «Связные грунты требуют большой амплитуды и больших ударных сил для сжатия и формования материала», - объясняет он. «[Срезающие усилия] достигаются за счет конструкции башмака трамбовки или выступающей массы катка.Элементы перемешивают и измельчают почву, позволяя силе удара делать свою работу ».

В случае сыпучих грунтов наиболее эффективными являются виброплиты и гладкие вальцы. «В этих машинах используется вращающаяся неуравновешенная масса, работающая на определенных частотах. Частоты согласованы с диапазонами собственных частот для сыпучих грунтов», - отмечает Венцель.

«Вибрационные импульсы, создаваемые машиной, проникают в почву и заставляют частицы двигаться», - добавляет Конрарди.«Это снимает трение там, где частицы соприкасаются. И после прохождения машины гравитация заставит частицы осесть в более плотном состоянии».

Поскольку частицы в связном грунте более плоские, а между ними находятся вода и воздух, для уплотнения им требуется низкочастотная энергия удара с большой амплитудой, - говорит Питер Прайс из Bomag Americas Inc. Трамбовки обеспечивают такую ​​энергию, когда они подпрыгивают на поверхности земли. грунт, удаляя пустоты между частицами. В отличие от этого, пластины используют высокочастотную вибрацию для перемешивания частиц, чтобы они оседали под собственным весом.

До недавнего времени не существовало ни одной машины, которая могла бы делать все это, но сейчас ситуация меняется. «Подрядчики хотят, чтобы одна машина выполняла все работы», - говорит Прайс. Вследствие этого компания Bomag разработала обратимую пластину серии Dash 4, которая может уплотнять более широкий спектр материалов, таких как зернистые почвы с некоторым содержанием связующего. «Вы не можете взять нашу тарелку и использовать ее на глине, но вы можете запустить ее на естественной засыпке, которая представляет собой смесь связного и гранулированного».

Не переусердствуйте

Как и многие другие вещи, уплотнение почвы - это область, где можно получить слишком много хорошего.Почва может переуплотняться, что может снизить ее несущую способность.

«Продолжающееся уплотнение может вызвать разрушение почвы и расслоение почвенных смесей», - говорит Фабиан Салинас из Dynapac. «Это приводит к слабости слоев уплотнения основания».

Конрарди соглашается, добавляя: «Почва может поглотить только определенное количество энергии за определенный период времени. Если приложить слишком много энергии, почва может сдвинуться и сдвинуться с места, нарушая ранее выполненное уплотнение.Результатом может стать разрушение или разрушение частиц почвы, так что состав почвы действительно изменится. Измененный материал фактически имеет более низкую плотность, поскольку новые частицы меньше ».

Прайс говорит, что уплотнение происходит чаще, чем думает большинство людей. Хорошее средство - обратить внимание на поведение машины во время работы и следовать рекомендациям производителя. «Если [трамбовщик] скачкообразно прыгает, слезайте с материала, потому что это означает, что энергия уходит в землю и возвращается от материала в машину», - советует он.

Венцель объясняет: «Во время уплотнения рыхлого насыпи (почвы) энергия машины направляется и потребляется почвой. Когда частицы почвы плотно упакованы, эта энергия будет отражаться обратно в машину и оператора, а не потребляться в почва." Следовательно, наиболее практичным и очевидным признаком чрезмерного уплотнения является реакция используемой машины.

Как правило, эксперты советуют ограничивать проходы материала до трех раз для трамбовки и четырех раз для плиты.Или, что еще лучше, просто подберите машину к глубине укладываемой почвы. «Большинство производителей оценивают свои машины в зависимости от глубины почвы или подъема, который она может уплотнять, - говорит Конрарди. «Этот рейтинг обычно относится к слою хорошо рассортированного песка и гравия, который является обычной засыпкой для опор, фундаментов и участков, где требуется более высокая плотность».

Он добавляет: «Как правило, возьмите максимальную глубину уплотнения и разделите ее на три. Если это число больше, чем размещаемый слой, возможно чрезмерное уплотнение.«Например, если у вас есть уплотнитель, рассчитанный на глубину 24 дюйма, и укладывается слой толщиной 6 дюймов, вы рискуете чрезмерное уплотнение при использовании этой машины.

Плотность мониторинга

Определение степени уплотнения грунта в конкретном проекте и соответствие результатов требуемым спецификациям обычно является обязанностью инженера по грунтовым поверхностям. Чтобы ускорить процесс испытаний, Weber представил систему Compatrol, первую систему непрерывного контроля уплотнения для реверсивных уплотнителей грунта.

С помощью системы Compatrol оператор сразу же узнает о любой потенциальной проблеме, которая может развиться и повлиять на результаты, например, чрезмерное уплотнение, недостаточное уплотнение или ситуации, когда почва не уплотняется. Система основана на анализе частотного диапазона и состоит из дисплея и датчика ускорения. Технологическое измеряет увеличение ускорения и уменьшение опорной плиты уплотнителя почвы; сравнивает измеренные значения с зарегистрированными характеристиками почвы; и переводит результаты в «электрическое напряжение."Отображаемый результат уплотнения легко понять.

«До недавнего времени эти измерители уплотнения или устройства контроля уплотнения были доступны только на некоторых асфальтовых катках и некоторых вибрационных катках, используемых для уплотнения почвы на больших площадях», - говорит Макканнелл. «Но сегодня они также доступны на реверсивных пластинах с ручным управлением, используемых в ограниченных пространствах, недоступных для больших роликов».

Bomag также разрабатывает собственную систему для пластинчатых уплотнителей, которая будет согласовывать уплотнение с требованиями к плотности.Он должен быть доступен в Северной Америке где-то в течение следующего года.

.

% PDF-1.4 % 196 0 obj> endobj xref 196 61 0000000016 00000 н. 0000002110 00000 н. 0000002194 00000 н. 0000002384 00000 н. 0000002826 00000 н. 0000003239 00000 н. 0000003713 00000 н. 0000003865 00000 н. 0000004400 00000 н. 0000004436 00000 н. 0000004483 00000 н. 0000004530 00000 н. 0000004577 00000 н. 0000004624 00000 н. 0000004670 00000 н. 0000004716 00000 н. 0000004762 00000 н. 0000005005 00000 н. 0000005233 00000 н. 0000005457 00000 н. 0000005679 00000 н. 0000005756 00000 н. 0000007232 00000 н. 0000008741 00000 н. 0000009598 00000 п. 0000010400 00000 п. 0000011190 00000 п. 0000011323 00000 п. 0000012127 00000 п. 0000013333 00000 п. 0000013969 00000 п. 0000014652 00000 п. 0000017264 00000 п. 0000018843 00000 п. 0000021513 00000 п. 0000022255 00000 п. 0000023019 00000 п. 0000023275 00000 п. 0000023684 00000 п. 0000030598 00000 п. 0000030697 00000 п. 0000033150 00000 п. 0000036512 00000 п. 0000037062 00000 п. 0000037417 00000 п. 0000037516 00000 п. 0000040452 00000 п. 0000040551 00000 п. 0000042656 00000 п. 0000049939 00000 н. 0000050170 00000 п. 0000050355 00000 п. 0000050642 00000 п. 0000050761 00000 п. 0000051038 00000 п. 0000051157 00000 п. 0000051433 00000 п. 0000051552 00000 п. 0000051827 00000 п. 0000051946 00000 п. 0000001516 00000 н. трейлер ] >> startxref 0 %% EOF 256 0 obj> поток xb``a``s``c` ̀

.

Смотрите также