Расчет коэффициента теплопередачи стены


SmartCalc. Расчет утепления и точки росы для строящих свой дом. СНИП.

Представленный теплотехнический расчет ограждающих конструкций зданий является оценочным и предназначен для предварительного выбора материалов и проектирования конструкций.

При разработке проекта для проведения точного расчета необходимо обратиться в организацию, обладающую соответствующими полномочиями и разрешениями.

Расчет основан на российской нормативной базе:

  • СНиП 23-02-2003 "Тепловая защита зданий"
  • СП 23-101-2004 "Проектирование тепловой защиты зданий"
  • ГОСТ Р 54851—2011 "Конструкции строительные ограждающие неоднородные. Расчет приведенного сопротивления теплопередаче"
  • СТО 00044807-001-2006 "Теплозащитные свойства ограждающих конструкций зданий"

Добавьте ссылку на расчет в закладки:
Ссылка на расчет

Или скопируйте ее в буфер обмена:

Отчет в PDF

Расчет толщины стены по теплопроводности из разных материалов

Чтобы определить, какой толщины возводить стену при постройке дома, нужно научиться рассчитать теплопроводность стен. Этот показатель зависит от используемых строительных материалов, климатических условий.

Нормы толщины стен в южных и северных регионах будут различаться. Если не сделать расчет до начала строительства, то может оказаться так, что в доме зимой будет холодно и сыро, а летом слишком влажно.

Чтобы этого избежать, нужно высчитать коэффициент сопротивления теплопередачи материала для постройки стен и утеплителя.

Для чего нужен расчет

Толщина стен в южных и северных широтах должна отличаться

Чтобы сэкономить на отоплении и способствовать созданию здорового микроклимата в помещении, нужно правильно рассчитать толщину стен и утеплительных материалов, которые будем использовать при строительстве. По закону физики, когда на улице холодно, а в помещении тепло, то через стену и кровлю тепловая энергия выходит наружу.

Если неправильно рассчитать толщину стен, сделать их слишком тонкими и не утеплить, это приведет к негативным последствиям:

  • зимой стены будут промерзать;
  • на обогрев помещения будут затрачиваться значительные средства;
  • сместиться точка росы, что приведет к образованию конденсата и влажности в помещении, заведется плесень;
  • летом в доме будет так же жарко, как и под палящим солнцем.

Чтобы избежать этих неприятностей, нужно перед началом строительства просчитать показатели теплопроводности материала и определиться, какой толщины возводить стену, и каким теплосберегающим материалом ее утеплять.

От чего зависит теплопроводность

Проводимость тепла во многом зависит от материала стен

Проводимость тепла рассчитывают исходя из количества тепловой энергии, проходящей через материал площадью 1 кв. м. и толщиной 1 м при разнице температур внутри и снаружи в один градус. Испытания проводят в течение 1 часа.

Проводимость тепловой энергии зависит от:

  • физических свойств и состава вещества;
  • химического состава;
  • условий эксплуатации.

Теплосберегающими считаются материалы с показателем менее 17 ВТ/ (м·°С).

Выполняем расчеты

Сопротивление передаче тепла должно быть больше минимума, указанного в нормативах

Расчет толщины стен по теплопроводности является важным фактором в строительстве. При проектировании зданий архитектор рассчитывает толщину стен, но это стоит дополнительных денег. Чтобы сэкономить, можно разобраться, как рассчитать нужные показатели самостоятельно.

Скорость передачи тепла материалом зависит от компонентов, входящих в его состав. Сопротивление передачи тепла должно быть больше минимального значения, указанного в нормативном документе «Тепловая изоляция зданий».

Рассмотрим, как рассчитать толщину стены в зависимости от применяемых в строительстве материалов.

Формула расчета:

R=δ/ λ (м2·°С/Вт), где:

δ это толщина материала, используемого для строительства стены;

λ показатель удельной теплопроводности, рассчитывается в (м2·°С/Вт).

Когда приобретаете стройматериалы, в паспорте на них обязательно должен быть указан коэффициент теплопроводности.

Значения параметров для жилых домов указаны в СНиП II-3-79 и СНиП 23-02-2003.

Допустимые значения в зависимости от региона

Минимально допустимое значение проводимости тепла для различных регионов указано в таблице:

Показатель теплопроводностиРегион
12 м2•°С/ВтКрым
22,1 м2•°С/ВтСочи
32,75 м2•°С/ВтРостов—на—Дону
43,14 м2•°С/ВтМосква
53,18 м2•°С/ВтСанкт—Петербург

У каждого материала есть свой показатель проводимости тепла. Чем он выше, тем больше тепла пропускает через себя этот материал.

Показатели теплопередачи для различных материалов

Величины проводимости тепла материалами и их плотность указаны в таблице:

МатериалВеличина теплопроводности Плотность
Бетонные 1,28—1,512300—2400
Древесина дуба 0,23—0,1 700
Хвойная древесина 0,10—0,18500
Железобетонные плиты1,692500
Кирпич с пустотами керамический 0,41—0,351200—1600

Теплопроводность строительных материалов зависит от их плотности и влажности. Одни и те же материалы, изготовленные разными производителями, могут отличаться по свойствам, поэтому коэффициент нужно смотреть в инструкции к ним.

Расчет многослойной конструкции

При расчете многослойной конструкции суммируйте показатели теплосопротивляемости всех материалов

Если стену будем строить из различных материалов, допустим, кирпич, минеральная вата, штукатурка, рассчитывать величины следует для каждого отдельного материала. Зачем полученные числа суммировать.

В этом случае стоит работать по формуле:

Rобщ= R1+ R2+…+ Rn+ Ra, где:

R1-Rn- термическое сопротивление слоев разных материалов;

Ra.l– термосопротивление закрытой воздушной прослойки. Величины можно узнать в таблице 7 п. 9 в СП 23-101-2004. Прослойка воздуха не всегда предусмотрена при постройке стен. Подробнее о расчетах смотрите в этом видео:

На основании этих подсчетов можно сделать вывод о том, можно ли применять выбранные стройматериалы, и какой они должны быть толщины.

Последовательность действий

Первым делом, нужно выбрать строительные материалы, которые будете использовать для постройки дома. После этого рассчитываем термическое сопротивление стены по описанной выше схеме. Полученные величины следует сравнивать с данными таблиц. Если они совпадают или оказываются выше, хорошо. 

Если величина ниже, чем в таблице, тогда нужно увеличить толщину  утеплителя или стены, и снова выполнить подсчет. Если в конструкции присутствует воздушная прослойка, которая вентилируется наружным воздухом, тогда в учет не следует брать слои, находящиеся между воздушной камерой и улицей.

Как выполнить подсчеты на онлайн калькуляторе

Чтобы получить нужные величины, стоит ввести в онлайн калькулятор регион, в котором будет эксплуатироваться постройка, выбранный материал и предполагаемую толщину стен.

В сервис занесены сведения по каждой отдельной климатической зоне:

  • t воздуха;
  • средняя температура в отопительный сезон;
  • длительность отопительного сезона;
  • влажность воздуха.
Температура и влажность внутри помещения – одинаковы для каждого региона

Сведения, одинаковые для всех регионов:

  • температура и влажность воздуха внутри помещения;
  • коэффициенты теплоотдачи внутренних, наружных поверхностей;
  • перепад температур.

Чтобы дом был теплым, и в нем сохранялся здоровый микроклимат, при выполнении строительных работ нужно обязательно выполнять расчет теплопроводности материалов стены. Это несложно сделать самостоятельно или воспользовавшись онлайн калькулятором в интернете. Подробнее о том, как пользоваться калькулятором, смотрите в этом видео:

Для гарантировано точного определения толщины стен можно обратиться в строительную компанию. Ее специалисты выполнят все необходимые расчеты согласно требованиям нормативных документов.

КАЛЬКУЛЯТОР ТЕПЛОПОТЕРЬ СТЕН ДОМА. РАСЧЁТ ТОЛЩИНЫ СТЕН ДЛЯ РАЗЛИЧНЫХ РЕГИОНОВ

Калькулятор расчета теплопроводности стен жилых домов разработан в строгом соответствии с СНиП П-03-79. Функционал позволяет рассчитать степень теплопроводности любой стены и сравнить его с требуемой СНиПом величиной. От Вас требуется указать предполагаемый регион строительства и выбрать материал и толщину стен.

Для любознательных рассмотрим участвующие в вычислениях величины:

Статистические сведения для определенного региона:

Темп. наруж. воздуха -
Ср. темп. отопит. периода
Продолж. отопит. периода 
Условия экспл. в зонах влажности 
Используемые для расчетов константы из ГОСТ (одинаковы для всех регионов):
Темп. внутр. воздуха
Влажность внутр. воздуха
Коэффициент теплоотд. внутр. пов.
Коэффициент теплоотд. наруж.пов.
Коэффициент теплотехн. однород.
Коэффициент полож.наруж поверхн.
Нормируемый темп.перепад

Вышеуказанный СНиП также утверждает методики расчета теплопроводности. Полученный по формулам коэффициент теплопроводности должен удовлетворять требованиям из этого же СНиП, т.е. быть выше двух коэффициентов, рассчитанным по разным формулам.

Расчет теплопроводности стен дома, формула и калькулятор онлайн

Как правило, теплосопротивление стен различается по регионам, и утепление помещений необходимо выполнять, учитывая климат. Ведь именно от хорошей теплоизоляции зависит температура внутри помещения и самих стен, а также то, как долго прослужит конструкция дома.

Каким теплотехническим требованиям должны соответствовать стены?

Все стены должны отвечать следующим теплотехническим требованиям:

  • Материалы, из которых изготовлены стены, должны иметь хорошие теплозащитные свойства.
  • Внутренняя часть стены должна иметь температуру, сходную с температурой воздуха в помещении, чтобы не образовывался конденсат. Допустимый предел температурных различий – от 4 до 12 градусов.
  • Стены должны быть максимально устойчивыми к влажности.

Также материалы не должны пропускать ветер и сквозняк.

Надо учитывать, что тип материала утепления напрямую зависит от того, из чего изготовлена конструкция помещения.

Следующий немаловажный фактор – это количество утеплителя, а также его толщина. Толщина рассчитывается исходя из свойств материала постройки.

Характеристика теплозащитных свойств

Теплозащитные свойства стен напрямую зависят от теплопроводности материалов, которыми они были утеплены. Уровень теплопроводности равен объему тепла, проходящему за один час через один квадратный метр защитного материала толщиной в метр.

Самая низкая теплопроводность – у минеральной ваты, угольной ваты, пенополиуретана и других подобных материалов.

Но выбор утеплителя обуславливается и материалом возведения стен. Например, для деревянных домов подойдет минеральная или угольная вата. Обусловлено это тем, что они оказывают большое сопротивление холоду, но при этом позволяют дышать конструкции.

Для утепления кирпичных стен вполне подойдут пенопласт, пеноплекс, пенополиуретан и другие похожие по характеристикам утеплители.

Как выполнить расчет теплопроводности стены

При выборе утеплителя для стен важно учитывать, в какой температурной зоне находится помещение, а также теплоизоляционные характеристики материала стен. Большая часть территории России, за исключением некоторых областей, находится в переменчивой климатической зоне.

Для подобных температурных режимов коэффициент сопротивления теплопередач должен быть равен трем или немного больше трех. Если стены построены из кирпича и толщина составляет не более 50 см, то коэффициент сопротивления теплопередачи стен будет составлять не более, чем 0,7.

Чтобы стены имели соответствующие нормам теплоизоляционные характеристики, потребуется утеплитель с коэффициентом сопротивления теплоотдачи не меньше 2,6. Этому показателю соответствует пенопласт толщиной до 10 см. Очень важно учитывать и теплопотери через стены.

Как рассчитать теплопотери через стены

В готовой системе теплопотери происходят на стыках между листами утеплителя, через отверстия для дюбелей, крепящих его к стене. Также теплопотери могут возникать, например, в краевых зонах, а также в местах, где теплоизолятор примыкает к кровле.

Они могут возникнуть на оконных и дверных откосах, так как в большинстве случаев там невозможно смонтировать утеплитель нужной толщины. В лучшем случае, туда можно вмонтировать пенополистирол, толщина которого составляет не более 5 см.

К тому же структура части стен дома характеризуется повышенной влажностью – это кухня, ванная комната и санузлы. Влага снижает теплоизоляционные характеристики большинства утеплителей как минимум на 20%.

Поэтому необходимо внести поправку в расчеты к проектной толщине утеплителя – на 100 мм добавить дополнительных 20 мм. Благодаря увеличению толщины утеплителя происходит компенсация вышеперечисленных потерь тепла.

Если толщина стен меньше 50 см, и они возведены из стандартных строительных материалов, то толщина утеплителя будет составлять не менее 12 см. Только при таких условиях утепление даст желаемый результат и стены будут соответствовать современным теплоизоляционным нормам.

Как посчитать теплопотери на калькуляторе онлайн

Для тех, у кого нет возможности или желания самостоятельно считать все параметры наружных и внутренних коэффициентов, существует калькулятор. Он способен рассчитать различные значения, необходимые для достижения нужного температурного эффекта для той или иной конструкции.

Кроме того, калькулятор может рассчитать коэффициент сопротивления конструкции. Рассмотрим каждый пример подробнее.

Для того чтобы рассчитать к.с. наружных или внутренних стен, введите в калькулятор следующие параметры: толщину наружных или внутренних утеплителей, толщину стены, на которую они установлены, а также среднюю норму температурного режима.

После того как все данные введены, можно нажимать кнопку «считать» и калькулятор выдаст достоверный результат. То же самое делается в примере, где необходимо считать значения для определения ширины наружных и внутренних утеплителей.

Для того чтобы правильно выбрать материал для поддержания нормальной температуры стен, тщательно высчитывайте значения коэффициента сопротивления. Сделать это можно как самостоятельно, так и при помощи калькулятора.

Кроме того, материал для утепления какой-либо строительной конструкции напрямую зависит от сырья, из которого изготовлена эта конструкция. Поэтому прежде чем начать считать коэффициенты, правильно подберите сочетающиеся между собой варианты.

Онлайн калькулятор расчета теплопотерь дома

Расчет теплопроводности стены - СамСтрой

Чтобы определить, какой толщины возводить стену при постройке дома, нужно научиться рассчитать теплопроводность стен. Этот показатель зависит от используемых строительных материалов, климатических условий.

Нормы толщины стен в южных и северных регионах будут различаться. Если не сделать расчет до начала строительства, то может оказаться так, что в доме зимой будет холодно и сыро, а летом слишком влажно.

Чтобы этого избежать, нужно высчитать коэффициент сопротивления теплопередачи материала для постройки стен и утеплителя.

Для чего нужен расчет

Толщина стен в южных и северных широтах должна отличаться

Чтобы сэкономить на отоплении и способствовать созданию здорового микроклимата в помещении, нужно правильно рассчитать толщину стен и утеплительных материалов, которые будем использовать при строительстве. По закону физики, когда на улице холодно, а в помещении тепло, то через стену и кровлю тепловая энергия выходит наружу.

Если неправильно рассчитать толщину стен, сделать их слишком тонкими и не утеплить, это приведет к негативным последствиям:

  • зимой стены будут промерзать;
  • на обогрев помещения будут затрачиваться значительные средства;
  • сместиться точка росы, что приведет к образованию конденсата и влажности в помещении, заведется плесень;
  • летом в доме будет так же жарко, как и под палящим солнцем.

Чтобы избежать этих неприятностей, нужно перед началом строительства просчитать показатели теплопроводности материала и определиться, какой толщины возводить стену, и каким теплосберегающим материалом ее утеплять.

От чего зависит теплопроводность

Проводимость тепла во многом зависит от материала стен

Проводимость тепла рассчитывают исходя из количества тепловой энергии, проходящей через материал площадью 1 кв. м. и толщиной 1 м при разнице температур внутри и снаружи в один градус. Испытания проводят в течение 1 часа.

Проводимость тепловой энергии зависит от:

  • физических свойств и состава вещества;
  • химического состава;
  • условий эксплуатации.

Теплосберегающими считаются материалы с показателем менее 17 ВТ/ (м·°С).

Выполняем расчеты

Сопротивление передаче тепла должно быть больше минимума, указанного в нормативах

Расчет толщины стен по теплопроводности является важным фактором в строительстве. При проектировании зданий архитектор рассчитывает толщину стен, но это стоит дополнительных денег. Чтобы сэкономить, можно разобраться, как рассчитать нужные показатели самостоятельно.

Скорость передачи тепла материалом зависит от компонентов, входящих в его состав. Сопротивление передачи тепла должно быть больше минимального значения, указанного в нормативном документе «Тепловая изоляция зданий».

Рассмотрим, как рассчитать толщину стены в зависимости от применяемых в строительстве материалов.

Формула расчета:

R=δ/ λ (м2·°С/Вт), где:

δ это толщина материала, используемого для строительства стены;

λ показатель удельной теплопроводности, рассчитывается в (м2·°С/Вт).

Когда приобретаете стройматериалы, в паспорте на них обязательно должен быть указан коэффициент теплопроводности.

Значения параметров для жилых домов указаны в СНиП II-3-79 и СНиП 23-02-2003.

Показатели теплопередачи для различных материалов

Величины проводимости тепла материалами и их плотность указаны в таблице:

МатериалВеличина теплопроводностиПлотность

Бетонные1,28—1,512300—2400
Древесина дуба0,23—0,1700
Хвойная древесина0,10—0,18500
Железобетонные плиты1,692500
Кирпич с пустотами керамический0,41—0,351200—1600

Теплопроводность строительных материалов зависит от их плотности и влажности. Одни и те же материалы, изготовленные разными производителями, могут отличаться по свойствам, поэтому коэффициент нужно смотреть в инструкции к ним.

Расчет многослойной конструкции

При расчете многослойной конструкции суммируйте показатели теплосопротивляемости всех материалов

Если стену будем строить из различных материалов, допустим, кирпич, минеральная вата, штукатурка, рассчитывать величины следует для каждого отдельного материала. Зачем полученные числа суммировать.

В этом случае стоит работать по формуле:

Rобщ= R1+ R2+…+ Rn+ Ra, где:

R1-Rn- термическое сопротивление слоев разных материалов;

Ra.l– термосопротивление закрытой воздушной прослойки. Величины можно узнать в таблице 7 п. 9 в СП 23-101-2004. Прослойка воздуха не всегда предусмотрена при постройке стен.

На основании этих подсчетов можно сделать вывод о том, можно ли применять выбранные стройматериалы, и какой они должны быть толщины.

Последовательность действий

Первым делом, нужно выбрать строительные материалы, которые будете использовать для постройки дома. После этого рассчитываем термическое сопротивление стены по описанной выше схеме. Полученные величины следует сравнивать с данными таблиц. Если они совпадают или оказываются выше, хорошо.

Если величина ниже, чем в таблице, тогда нужно увеличить толщину  утеплителя или стены, и снова выполнить подсчет. Если в конструкции присутствует воздушная прослойка, которая вентилируется наружным воздухом, тогда в учет не следует брать слои, находящиеся между воздушной камерой и улицей.

Как выполнить подсчеты на онлайн калькуляторе

Чтобы получить нужные величины, стоит ввести в онлайн калькулятор регион, в котором будет эксплуатироваться постройка, выбранный материал и предполагаемую толщину стен.

В сервис занесены сведения по каждой отдельной климатической зоне:

  • t воздуха;
  • средняя температура в отопительный сезон;
  • длительность отопительного сезона;
  • влажность воздуха.

Температура и влажность внутри помещения — одинаковы для каждого региона

Сведения, одинаковые для всех регионов:

  • температура и влажность воздуха внутри помещения;
  • коэффициенты теплоотдачи внутренних, наружных поверхностей;
  • перепад температур.

Чтобы дом был теплым, и в нем сохранялся здоровый микроклимат, при выполнении строительных работ нужно обязательно выполнять расчет теплопроводности материалов стены. Это несложно сделать самостоятельно или воспользовавшись онлайн калькулятором в интернете. Подробнее о том, как пользоваться калькулятором, смотрите в этом видео:

Для гарантировано точного определения толщины стен можно обратиться в строительную компанию. Ее специалисты выполнят все необходимые расчеты согласно требованиям нормативных документов.

Толщина наружных стен дома с примером расчета на газобетоне

Методический материал для самостоятельного расчета толщины стен дома с примерами и теоретической частью.

Часть 1. Сопротивление теплопередаче – первичный критерий определения толщины стены

Чтобы определится с толщиной стены, которая необходима для соответствия нормам энергоэффективности, рассчитывают сопротивление теплопередаче проектируемой конструкции, согласно раздела 9 «Методика проектирования тепловой защиты зданий» СП 23-101-2004.

Сопротивление теплопередаче – это свойство материала, которое показывает, насколько способен удерживать тепло данный материал. Это удельная величина, которая показывает насколько медленно теряется тепло в ваттах при прохождении теплового потока через единичный объем при перепаде температур на стенках в 1°С. Чем выше значение данного коэффициента – тем «теплее» материал.

Все стены (несветопрозрачные ограждающие конструкции) считаются на термоспротивление по формуле:

R=δ/λ (м2·°С/Вт), где:

δ – толщина материала, м;

λ - удельная теплопроводность, Вт/(м ·°С) (можно взять из паспортных данных материала либо из таблиц).

Полученную величину Rобщ сравнивают с табличным значением в СП 23-101-2004.

Чтобы ориентироваться на нормативный документ необходимо выполнить расчет количества тепла, необходимого для обогрева здания. Он выполняется по СП 23-101-2004, получаемая величина «градусо·сутки». Правила рекомендуют следующие соотношения.

Таблица 1. Уровни теплозащиты рекомендуемых ограждающих конструкций наружных стен

Материал стены

Сопротивление теплопередаче (м2·°С/Вт) / область применения (°С·сут)

конструкционный

теплоизоляционный

Двухслойные с наружной теплоизоляцией

Трехслойные с изоляцией в середине

С невентили- руемой атмосферной прослойкой

С вентилируемой атмосферной прослойкой

Кирпичная кладка

Пенополистирол

5,2/10850

4,3/8300

4,5/8850

4,15/7850

Минеральная вата

4,7/9430

3,9/7150

4,1/7700

3,75/6700

Керамзитобетон (гибкие связи, шпонки)

Пенополистирол

5,2/10850

4,0/7300

4,2/8000

3,85/7000

Минеральная вата

4,7/9430

3,6/6300

3,8/6850

3,45/5850

Блоки из ячеистого бетона с кирпичной облицовкой

Ячеистый бетон

2,4/2850

-

2,6/3430

2,25/2430

Примечание. В числителе (перед чертой) – ориентировочные значения приведенного сопротивления теплопередаче наружной стены, в знаменателе (за чертой) - предельные значения градусо-суток отопительного периода, при которых может быть применена данная конструкция стены.

Полученные результаты необходимо сверить с нормами п. 5. СНиП 23-02-2003 «Тепловая защита зданий».

Также следует учитывать климатические условия зоны, где возводится здание: для разных регионов разные требования из-за разных температурных и влажностных режимов. Т.е. толщина стены из газоблока не должна быть одинаковой для приморского района, средней полосы России и крайнего севера. В первом случае необходимо будет скорректировать теплопроводность с учетом влажности (в большую сторону: повышенная влажность снижает термосопротивление), во втором – можно оставить «как есть», в третьем – обязательно учитывать, что теплопроводность материала вырастет из-за большего перепада температур.

Часть 2. Коэффициент теплопроводности материалов стен

Коэффициент теплопроводности материалов стен – эта величина, которая показывает удельную теплопроводность материала стены, т.е. сколько теряется тепла при прохождении теплового потока через условный единичный объем с разницей температур на его противоположных поверхностях в 1°С. Чем ниже значение коэффициента теплопроводности стен – тем здание получится теплее, чем выше значение – тем больше придется заложить мощности в систему отопления.

По сути, это величина обратная термическому сопротивлению, рассмотренному в части 1 настоящей статьи. Но это касается только удельных величин для идеальных условий. На реальный коэффициент теплопроводности для конкретного материала влияет ряд условий: перепад температур на стенках материала, внутренняя неоднородная структура, уровень влажности (который увеличивает уровень плотности материала, и, соответственно, повышает его теплопроводность) и многие другие факторы. Как правило, табличную теплопроводность необходимо уменьшать минимум на 24% для получения оптимальной конструкции для умеренных климатических зон.

Часть 3. Минимально допустимое значение сопротивления стен для различных климатических зон.

Минимально допустимое термосопротивление рассчитывается для анализа теплотехнических свойств проектируемой стены для различных климатических зон. Это нормируемая (базовая) величина, которая показывает, каким должно быть термосопротивление стены в зависимости от региона. Сначала вы выбираете материал для конструкции, просчитываете термосопротивление своей стены (часть 1), а потом сравниваете с табличными данными, содержащимися в СНиП 23-02-2003. В случае, если полученное значение окажется меньше установленного правилами, то необходимо либо увеличить толщину стены, либо утеплить стену теплоизоляционным слоем (например, минеральной ватой).

Согласно п. 9.1.2 СП 23-101-2004, минимально допустимое сопротивление теплопередаче Rо2·°С/Вт) ограждающей конструкции рассчитывается как

Rо = R1+ R2+R3, где:

R1=1/αвн, где αвн – коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м2 × °С), принимаемый по таблице 7 СНиП 23-02-2003;

R2 = 1/αвнеш, где αвнеш - коэффициент теплоотдачи наружной поверхности ограждающей конструкции для условий холодного периода, Вт/(м2 × °С), принимаемый по таблице 8 СП 23-101-2004;

R3 – общее термосопротивление, расчет которого описан в части 1 настоящей статьи.

При наличии в ограждающей конструкции прослойки, вентилируемой наружным воздухом, слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью, в этом расчете не учитываются. А на поверхности конструкции, обращенной в сторону вентилируемой воздухом снаружи прослойки, следует принимать коэффициент теплоотдачи αвнеш равным 10,8 Вт/(м2·°С).

Таблица 2. Нормируемые значения термосопротивления для стен по СНиП 23-02-2003.

Жилые здания для различных регионов РФ

Градусо-сутки отопительного периода, D, °С·сут

Нормируемые значения сопротивления теплопередаче , R, м2·°С/Вт, ограждающих конструкций для стен

Астраханская обл., Ставропольский край, Краснодарский край

2000

2,1

Белгородская обл., Волгоградская обл.

4000

2,8

Алтай, Красноярский край, Москва, Санкт Петербург, Владимирская обл.

6000

3,5

Магаданская обл.

8000

4,2

Чукотка, Камчатская обл.,

г. Воркута

10000

4,9

 

12000

5,6

Уточненные значения градусо-суток отопительного периода,  указаны в таблице 4.1 справочного пособия к СНиП 23-01-99* Москва, 2006.

Часть 4. Расчет минимально допустимой толщины стены на примере газобетона для Московской области.

Рассчитывая толщину стеновой конструкции, берем те же данные, что указаны в Части 1 настоящей статьи, но перестраиваем основную формулу: δ = λ·R, где δ – толщина стены, λ – теплопроводность материала, а R – норма теплосопротивления по СНиП.

Пример расчета минимальной толщины стены из газобетона с теплопроводностью 0,12 Вт/м°С в Московской области со средней температурой внутри дома в отопительный период +22°С.

  1. Берем нормируемое теплосопротивление для стен в Московском регионе для температуры +22°C: Rreq= 0,00035·5400 + 1,4 = 3,29 м2°C/Вт
  2. Коэффициент теплопроводности λ для газобетона марки D400 (габариты 625х400х250 мм) при влажности 5% = 0,147 Вт/м∙°С.
  3. Минимальная толщина стены из газобетонного камня D400: R·λ = 3,29·0,147 Вт/м∙°С=0,48 м.

Вывод: для Москвы и области для возведения стен с заданным параметром теплосопротивления нужен газобетонный блок с габаритом по ширине не менее 500 мм , либо блок с шириной 400 мм и последующим утеплением (минвата+оштукатуривание, например), для обеспечения характеристик и требований СНиП в части энергоэффективности стеновых конструкций.

Таблица 3. Минимальная толщина стен, возводимых из различных материалов, соответствующих нормам теплового сопротивления согласно СНиП.

Материал

Толщина стены, м

Тепло-

проводность,

 Вт/м∙°С

Прим.

Керамзитоблоки

0,46

0,14

Для строительства несущих стен используют марку не менее D400.

Шлакоблоки

0,95

0,3-0,5

 

Силикатный кирпич

1,25

0,38-0,87

 

Газосиликатные блоки d500

0,40

0,12-0,24

Использую марку от D400 и выше для домостроения

Пеноблок

0,20-0.40

0,06-0,12

строительство только каркасным способом

Ячеистый бетон

От 0,40

0,11-0,16

Теплопроводность ячеистого бетона прямо пропорциональна его плотности: чем «теплее» камень, тем он менее прочен.

Арболит

0,23

0,07 – 0,17

Минимальный размер стен для каркасных сооружений

Кирпич керамический полнотелый

1,97

0,6 – 0,7

 

Песко-бетонные блоки

4,97

1,51

При 2400 кг/м³ в условиях нормальной температуры и влажности воздуха.

Часть 5. Принцип определения значения сопротивления теплопередачи в многослойной стене.

Если вы планируете построить стену из нескольких видов материала (например, строительный камень+минеральный утеплитель+штукатурка), то R рассчитывается для каждого вида материала отдельно (по этой же формуле), а потом суммируется:

Rобщ= R1+ R2+…+ Rn+ Ra.l где:

R1-Rn - термосопротивления различных слоев

Ra.l – сопротивление замкнутой воздушной прослойки, если она присутствует в конструкции (табличные значения берутся в СП 23-101-2004, п. 9, табл. 7)

Пример расчета толщины минераловатного утеплителя для многослойной стены (шлакоблок - 400 мм, минеральная вата - ? мм, облицовочный кирпич - 120 мм) при значении сопротивления теплопередаче 3,4 м2*Град С/Вт (г. Оренбург).

R=Rшлакоблок+Rкирпич+Rвата=3,4

Rшлакоблок = δ/λ = 0,4/0,45 = 0,89 м2×°С/Вт

Rкирпич = δ/λ = 0,12/0,6 = 0,2 м2×°С/Вт

Rшлакоблок+Rкирпич=0,89+0,2 = 1,09 м2×°С/Вт (<3,4).

Rвата=R-(Rшлакоблок+Rкирпич) =3.4-1,09=2,31 м2×°С/Вт

δвата=Rвата·λ=2,31*0,045=0,1 м=100 мм (принимаем λ=0,045 Вт/(м×°С) – среднее значение теплопроводности для минеральной ваты различных видов).

Вывод: для соблюдения требований по сопротивлению теплопередачи можно использовать керамзитобетонные блоки в качестве основной конструкции с облицовкой ее керамическим кирпичом и прослойкой из минеральной ваты теплопроводностью не менее 0,45 и толщиной от 100 мм.

Общий коэффициент теплопередачи

Теплопередача через поверхность, например стену, может быть рассчитана как

q = UA dT (1)

, где

q = теплопередача (Вт (Дж / с), БТЕ / ч)

U = общий коэффициент теплопередачи (Вт / (м 2 K), БТЕ / (фут 2 ч o F) )

A = площадь стены (м 2 , фут 2 )

dT = (t 1 - t 2 )

= разница температур по стене ( o C, o F)

Общий коэффициент теплопередачи для многослойной стены, трубы или теплообменника - с потоком жидкости с каждой стороны стены - можно рассчитать как

1 / UA = 1 / ч ci A i + Σ (s 9004 5 n / k n A n ) + 1 / h co A o (2)

где

U = общий коэффициент теплопередачи (Вт / (м 2 K), БТЕ / (фут 2 ч o F) )

k n = теплопроводность материала в слое n (Вт / (м · K), БТЕ / (час · фут · ° F) )

h ci, o = внутренняя или внешняя стенка индивидуальная жидкость конвекция коэффициент теплопередачи (Вт / (м 2 K), Btu / (фут 2 h o F) )

s n = толщина слоя n ( м, футы)

9 0002 Плоская стена с равной площадью во всех слоях - можно упростить до

1 / U = 1 / h ci + Σ (s n / k n ) + 1 / h co (3)

Теплопроводность - k - для некоторых типичных материалов (проводимость не зависит от температуры)

  • Полипропилен PP: 0.1 - 0,22 Вт / (м · К)
  • Нержавеющая сталь: 16 - 24 Вт / (м · К)
  • Алюминий: 205 - 250 Вт / (м · К)
Преобразовать между Метрические и британские единицы
  • 1 Вт / (м · К) = 0,5779 БТЕ / (фут · ч o F)
  • 1 Вт / (м 2 K) = 0,85984 ккал / (hm 2 o C) = 0,1761 Btu / (ft 2 h o F)

Коэффициент конвективной теплопередачи - h - зависит от

  • тип жидкости - газ или жидкость
  • свойства потока, такие как скорость
  • другие свойства, зависящие от потока и температуры

Коэффициент конвективной теплопередачи для некоторых распространенных жидкостей:

  • Воздух - от 10 до 100 Вт / м 2 K
  • Вода - 500 до 10 000 Вт / м 2 K

Многослойные стены - Калькулятор теплопередачи

Этот калькулятор можно использовать для расчета общего коэффициента теплопередачи и теплопередачи через многослойную стену.Калькулятор является универсальным и может использоваться для метрических или британских единиц при условии, что единицы используются последовательно.

A - площадь (м 2 , футов 2 )

t 1 - температура 1 ( o C, o F)

t 2 - температура 2 ( o C, o F)

h ci - коэффициент конвективной теплоотдачи внутри стенки (Вт / (м 2 K), БТЕ / ( футов 2 ч o F) )

с 1 - толщина 1 (м, фут) k 1 - теплопроводность 1 (Вт / (м K) , БТЕ / (час фут ° F) )

с 2 - толщина 2 (м, фут) k 2 - теплопроводность 2 (Вт / (м · К), БТЕ / (час фут ° F) )

с 3 - толщина 3 (м, фут) k 3 - теплопроводность 3 (Вт / (м · K), БТЕ / (ч · фут · ° F) )

h co - коэффициент конвективной теплопередачи снаружи стены ( Вт / (м 2 K), Btu / (фут 2 h o F) )

Тепловое сопротивление теплопередачи

Сопротивление теплопередачи банка можно выразить как

R = 1 / U (4)

где

R = сопротивление теплопередаче (м 2 K / W, ft 2 h ° F / BTU)

Стена разделена на участки термического сопротивления, где

  • теплопередача между жидкостью и стеной - это одно сопротивление
  • сама стена является одним сопротивлением
  • передача между стеной и t Вторая жидкость - это термическое сопротивление

Поверхностные покрытия или слои «обожженного» продукта добавляют дополнительное термическое сопротивление стенкам, снижая общий коэффициент теплопередачи.

Некоторые типичные сопротивления теплопередаче
  • статический слой воздуха, 40 мм (1,57 дюйма) : R = 0,18 м 2 K / Вт
  • внутреннее сопротивление теплопередаче, горизонтальный ток: R = 0,13 м 2 K / W
  • внешнее сопротивление теплопередаче, горизонтальный ток: R = 0,04 м 2 K / W
  • внутреннее сопротивление теплопередаче, тепловой ток снизу вверх: R = 0,10 м 2 K / W
  • внешнее сопротивление теплопередаче, тепловой ток сверху вниз: R = 0.17 м 2 K / W

Пример - теплообмен в теплообменнике воздух-воздух

Пластинчатый теплообменник воздух-воздух площадью 2 м 2 и толщиной стенки 0,1 мм может быть изготовлен в полипропилен PP, алюминий или нержавеющая сталь.

Коэффициент конвекции тепла для воздуха составляет 50 Вт / м 2 K . Температура внутри теплообменника 100 o C , а наружная температура 20 o C .

Общий коэффициент теплопередачи U на единицу площади можно рассчитать, изменив (3) на

U = 1 / (1 / h ci + s / k + 1 / h co ) (3b)

Общий коэффициент теплопередачи для теплообменника из полипропилена

  • с теплопроводностью 0,1 Вт / м · К составляет

U PP = 1 / (1 / ( 50 Вт / м 2 K ) + ( 0.1 мм ) (10 -3 м / мм) / ( 0,1 Вт / мK ) + 1/ ( 50 Вт / м 2 K ) )

= 24,4 Вт / м 2 K

Теплопередача

q = ( 24,4 Вт / м 2 K ) ( 2 м 2 ) (( 100 o C ) - (2 0 o C ))

= 3904 W

= 3.9 кВт

  • нержавеющая сталь с теплопроводностью 16 Вт / м · К :

U SS = 1 / (1 / ( 50 Вт / м 2 K ) + ( 0,1 мм ) (10 -3 м / мм) / ( 16 Вт / мK ) + 1/ ( 50 Вт / м 2 K ) )

= 25 Вт / м 2 K

Теплопередача

q = ( 25 Вт / м 2 K ) ( 2 м 2 ) (( 100 o C ) - (2 0 o C ))

= 4000 Вт

= 4 кВт

  • алюминий с теплопроводностью 205 Вт / мK :

U Al = 1 / (1 / ( 50 Вт / м 2 K 90 077) + ( 0.1 мм ) (10 -3 м / мм) / (205 Вт / мK ) + 1/ ( 50 Вт / м 2 K ) )

= 25 Вт / м 2 K

Теплопередача

q = ( 25 Вт / м 2 K ) ( 2 м 2 ) (( 100 o C ) - (2 0 o C ))

= 4000 Вт

= 4 кВт

  • 1 Вт / (м 2 К) = 0.85984 ккал / (hm 2 o C) = 0,1761 Btu / (ft 2 h o F)

Типичный общий коэффициент теплопередачи

  • Газ свободной конвекции - газ свободной конвекции: U = 1-2 Вт / м 2 K (типичное окно, воздух из помещения через стекло)
  • Газ без конвекции - принудительная жидкая (проточная) вода: U = 5-15 Вт / м 2 K (типовые радиаторы центрального отопления)
  • Свободная конвекция газа - конденсационный пар Вода: U = 5-20 Вт / м 2 K (типичные паровые радиаторы)
  • Принудительная конвекция (проточная) Газ - Свободная конвекция газ: U = 3-10 Вт / м 2 K (пароперегреватели)
  • Принудительная конвекция (проточный) Газ - Принудительная конвекция Газ: U = 10-30 Вт / м 2 K (газы теплообменника)
  • Принудительная конвекция (проточный) газ - Принудительная жидкая (проточная) вода: U = 10-50 Вт / м 2 9 0022 K (охладители газа)
  • Принудительная конвекция (проточный) Газ - Конденсационный пар Вода: U = 10-50 Вт / м 2 K (воздухонагреватели)
  • Безжидкостная конвекция - принудительная конвекция Газ: U = 10-50 Вт / м 2 K (газовый котел)
  • Жидкостная конвекция - свободная конвекция Жидкость: U = 25-500 Вт / м 2 K (масляная баня для отопления)
  • Без жидкости Конвекция - принудительный ток жидкости (вода): U = 50 - 100 Вт / м 2 K (нагревательный змеевик в воде в резервуаре, вода без рулевого управления), 500-2000 Вт / м 2 K (нагревательный змеевик в резервуаре для воды) , вода с рулевым управлением)
  • Конвекция без жидкости - Конденсирующийся пар воды: U = 300 - 1000 Вт / м 2 K (паровые рубашки вокруг сосудов с мешалками, вода), 150 - 500 Вт / м 2 K (другие жидкости)
  • Принудительная жидкость (текущая) вода - газ свободной конвекции: U = 10-40 Вт / м 2 K (горючий камера сгорания + излучение)
  • Принудительная жидкость (текущая) вода - Свободная конвекционная жидкость: U = 500-1500 Вт / м 2 K (охлаждающий змеевик - перемешиваемый)
  • Принудительная жидкость (текущая) вода - Принудительная жидкость (проточная вода): U = 900 - 2500 Вт / м 2 K (теплообменник вода / вода)
  • Принудительная жидкая (проточная) вода - Конденсирующий пар водяной: U = 1000 - 4000 Вт / м 2 K (конденсаторы водяного пара)
  • Кипящая жидкая вода - свободный конвекционный газ: U = 10-40 Вт / м 2 K (паровой котел + излучение)
  • Кипящая жидкая вода - принудительное течение жидкости (вода) : U = 300 - 1000 Вт / м 2 K (испарение холодильников или охладителей рассола)
  • Кипящая жидкая вода - Конденсирующий пар воды: U = 1500 - 6000 Вт / м 2 K (испарители пар / вода)
.

Расчет общего коэффициента теплопередачи

EnggЦиклопедия
  • Калькуляторы
    • Размер оборудования
    • Размер инструмента
    • Разное
    • Падение давления
    • Размеры трубопровода
    • Физические свойства
    • Преобразование единиц измерения
      • Ускорение
      • Угол
      • Угловая скорость
      • Площадь
      • Угловое ускорение
      • Заряд
      • Ток
      • Плотность
      • Расстояние
      • Энергия
      • Индукция
      • Сила
      • Масса
      • Мощность
      • Давление
      • Удельная теплоемкость
      • Температура
      • Теплопроводность
      • Время
      • Момент
      • Скорость
      • Вязкость
      • Напряжение
      • Объем
      • 9003
      • Трубопроводы
      • Подрядчики и поставщики
      • Facebook
      • Твиттер
      EnggЦиклопедия
      • Калькуляторы
        • Размер оборудования
        • Размер инструмента
        • Разное
        • Падение давления
        • Размеры трубопровода
        • Физические свойства
        • Преобразование единиц измерения
          • Ускорение
          • Угол
          • Угловая скорость
          • Площадь
          • Угловое ускорение
          • Заряд
          • Ток
          • Плотность
          • Расстояние
          • Энергия
          • Индукция
          • Мощность
          • Масса
          • Мощность
          • Давление
          • Удельная теплоемкость
          • Температура
          • Теплопроводность
          • Время
          • Момент
          • Скорость
          • Вязкость
          • Напряжение
          • Объем
          • 9003
          • Трубопроводы
          • Подрядчики и поставщики
          EnggЦиклопедия
          • Калькуляторы
            • Расчет оборудования
            • Размер инструмента
            • Разное
            • Падение давления
            • Размеры трубопровода
            • Физические свойства
            • Преобразование единиц
              • Разгон
              • Уголок
              • Угловая скорость
              • Площадь
              • Угловое ускорение
              • Заряд
              • Текущий
              • Плотность
              • Расстояние
              • Энергия
              • Сила
              • Освещенность
              • Индуктивность
              • Яркость
              • Магнитный поток
              • Масса
              • Мощность
              • Давление
              • Удельная теплоемкость
          .

          Коэффициент теплопередачи в сочетании с повторно используемым бетонным кирпичом и стеной из теплоизоляционных плит из пенополистирола

          Четыре образца тектонических форм были взяты для проверки их коэффициентов теплопередачи. Путем анализа и сравнения тестовых значений и теоретических значений коэффициента теплопередачи был предложен метод расчета скорректированного значения для определения коэффициента теплопередачи; предложенный метод оказался достаточно корректным. Результаты показали, что коэффициент теплопередачи кирпичной стены из переработанного бетона выше, чем у стены из глиняного кирпича, коэффициент теплопередачи кирпичной стены из переработанного бетона может быть эффективно снижен в сочетании с изоляционной панелью из пенополистирола, а тип теплоизоляции сэндвич был лучше. чем у типа внешней теплоизоляции.

          1. Введение

          По мере того, как урбанизация постепенно расширяется, увеличиваются также высокие темпы строительства зданий и выдающиеся достижения в области энергосбережения [1]. Энергосбережение играет важную роль в национальных энергетических стратегиях, снижая значительную нагрузку на ресурсы и окружающую среду [2, 3]. В элементах частокола здания площадь внешней стены занимает большую долю по сравнению с крышей здания, дверями, окнами и т. Д. [4, 5].Тепловая консервация наружных стен является ключом к достижению энергоэффективности в зданиях [5, 6]. Наружные стены различаются в зависимости от строительных материалов, типов конструкций и условий окружающей среды. Глиняный кирпич, широко используемый во многих существующих зданиях, привел к огромным разрушениям земельных ресурсов. Производственный процесс с использованием высокотемпературных печей также привел к увеличению выбросов парниковых газов. Таким образом, возникла растущая потребность в исследованиях строительных материалов для зеленых стен и их термоконсервации и теплоизоляционных характеристик.Переработанный бетонный кирпич, изготовленный из измельченных отходов бетона, широко используется в кирпичных конструкциях в качестве экологически чистых строительных материалов. Было проведено множество исследований его механических свойств, но лишь несколько измерений его теплоизоляционных свойств [7]. Кроме того, наиболее распространенным типом теплоизоляции было добавление теплосохраняющих материалов снаружи наружной стены, с самым большим ограничением, заключающимся в более коротком сроке службы [8, 9]. Вспениваемый полистирол (EPS), используемый для теплоизоляции, продемонстрировал очевидные свойства сохранения тепла и теплоизоляции.Тем не менее, различные материалы для наружных стен с различными формами структурных типов для сохранения тепла из пенополистирола, независимо от того, отличаются ли различия их теплоизоляционных свойств, традиционно не были в центре внимания в контексте сохранения тепла стен и энергосбережения.

          Коэффициент теплопередачи () обычно использовался в качестве показателя для измерения термоконсервации и теплоизоляции стен корпуса и в основном определялся коэффициентом теплопроводности () материалов.Считается, что тепловая и влажная среда влияет на характеристики теплообмена стенок корпуса [10–12]. Коэффициент теплопроводности изменяется в зависимости от температуры и влажности воздуха, что приводит к отклонению между фактическим и теоретическим значением. Однако во многих исследованиях предполагалось, что характеристики материала не изменятся или коэффициент теплопроводности () материалов выражен как постоянный. Поэтому существует растущая потребность в изучении скорректированного коэффициента теплопроводности материала в различных средах и его расширенном применении в энергосберегающих конструкциях.

          Кирпичи из вторичного бетона обладают все большим потенциалом развития и использования. Его различное сочетание с изоляционной плитой EPS имеет как эффект экологической защиты окружающей среды, так и энергосбережение. Понимание характеристик теплопередачи вторичного бетонного кирпича в сочетании с изоляционной плитой из пенополистирола становится все более необходимым для количественной оценки их вклада в энергосбережение.

          Целями данного исследования было испытание коэффициента теплопередачи () кирпичной стены из вторичного бетона, прямое сравнение теплового поведения различных строительных решений стен и предложение скорректированного метода расчета коэффициента теплопередачи при оптимизации энергопотребления здания. .

          2. Тест коэффициента теплопередачи

          В настоящее время не существует официального стандарта для методов испытаний, которые непосредственно касаются динамических характеристик стен: основные справочные нормы [13] включают измерение стационарных характеристик одинарных материалов и многослойных конструкций. при стандартных граничных условиях. В этом исследовании был проведен экспериментальный анализ климатической камеры для сравнения влияния коэффициента теплопередачи элементов оболочки, которые характеризуются эквивалентными характеристиками в установившемся режиме.

          2.1. Типы стен и свойства материалов

          В этом исследовании были изготовлены четыре различных образца для количественной оценки их тепловых характеристик. Четыре образца, которые были отобраны среди типологий стен, подробно описаны на рисунке 1 и в таблице 1.

          0,020 цементный раствор 900

          Типы образцов Слои Толщина
          (м)
          Электропроводность
          ( Вт м −1 K −1 )
          Плотность
          (кг · м −3 )

          SJ0 Стенка из глиняного кирпича 0.240 0,508 1662

          SJ1 Переработанный бетонный кирпич стеновой 0,240 0,708 1887

          SJ2 0,930 [16] 1990
          2 изоляционная плита EPS 0,060 0,042 [16] 29,50
          3 кирпича из вторичного бетона стена 0.240 0,708 1887

          SJ3 1 кирпичная стена из вторичного бетона 0,115 0,708 1887
          2 цементный раствор 0,010 0,930 [16] 1990
          3 Изоляционная плита EPS 0,060 0,042 [16] 29,50
          4 цементный раствор 0,010 0.930 [16] 1990
          5 стеновых кирпичей из переработанного бетона 0,115 0,708 1887

          SJ0 была стеной из глиняных кирпичей; SJ1 была переработана бетонная кирпичная стена; SJ2 добавлен односторонний шаблон EPS на базе SJ1; SJ3 был добавлен в шаблон EPS в середине SJ1.

          2.2. Устройство для испытаний

          В соответствии со стандартами и исследованиями, касающимися этого типа испытаний [14, 15], в экспериментальных исследованиях использовалось устройство для измерения стационарной теплопередачи (CD-WTFl515, Шэньян, Китай).Условия теплопередачи тестируемой оболочки здания моделируются на основе стандарта GB / T 13475-2008 и однонаправленного устойчивого принципа теплопередачи для измерения и анализа коэффициента теплопередачи. Климатическая установка с контролем окружающей среды состоит из двух камер с кондиционированием воздуха, в которых температура регулируется с помощью термостойких проводов и систем охлаждения (рисунки 2 и 3). Одна камера используется для обеспечения климата на открытом воздухе. Температура дозирующего резервуара установлена ​​на -10 ° C (при допустимом перепаде температур ± 0.2 ° С). Другая камера имитирует внутреннюю среду, в которой температура установлена ​​на 35 ° C (с допустимым перепадом температур ± 0,1 ° C). Образцы были изготовлены в соответствии с предусмотренными размерами испытательного оборудования. Размеры установки и образцов составляют 2600 × 2160 × 2140 мм в высоту и 1500 × (≤400) × 1500 мм соответственно (рисунок 4). После 28 дней естественной сушки в испытательном устройстве поверхность раздела между образцами и испытательным устройством была герметизирована пенополиуретаном.




          Все образцы были испытаны в Пекинском центре испытаний строительных материалов. Перед обработкой образцов стен в аппарате сначала была проведена калибровка установки. Образцы стен внутри и снаружи должны соответствовать горячей и холодной камерам соответственно. Для каждого образца были измерены шесть групп данных связанных параметров окружающей среды, таких как температура горячего поля () и холодного поля (), влажность горячего поля () и холодного поля (), а также общая входная мощность (). уменьшить погрешность измерения.К каждой стороне образцов симметрично подключалось по девять датчиков температуры. Допустимый перепад температуры поверхности образца составлял ± 0,5 ° C, с интервалом сбора данных 10 мин. Измерения проводились в соответствии с настройками параметров согласно нормативам GB / T 13475-2008. Когда допустимый перепад температур был в пределах диапазона значений после трех часов непрерывного климат-контроля, испытания были прекращены.

          3. Модель расчета коэффициента теплопередачи

          Теплопередача через стену проходила в трех фазах: теплообмен внутренней поверхности; теплопроводность внутренней стены; теплообмен внешней поверхности.Методы расчета теплообмена на каждом этапе различны [17], с точки зрения решения процесса уравнения Фурье с помощью метода испытаний и метода теории, граничных условий.

          3.1. Принципы расчета испытательных значений

          Принцип испытания устройства для испытания теплоотдачи в установившемся режиме (CD-WTFl515, Шэньян, Китай) основан на одномерном установившемся теплопереносе. Образцы были помещены между двумя различными температурными полями для имитации теплопередачи стен в реальных условиях.По обе стороны от образца температура поверхности и температура воздуха измерялись датчиками температуры. Также были измерены поверхностные температуры с обеих сторон направляющей пластины. Были протестированы температура внутренней и внешней поверхности измерительной коробки и входная мощность. По измеренным данным можно рассчитать коэффициент теплопередачи стенок образцов [13], учтите, где - тепловой поток через стенку измерительной коробки (Вт · м −2 ), - коэффициент теплопередачи измерительной стенки (Вт м −2 K −1 ), является температурой внутренней поверхности измерительной камеры (K), и является температурой внешней поверхности измерительной камеры (K).

          Тогда коэффициент теплопередачи конструкции ограждения можно рассчитать по следующей формуле: где - общая потребляемая мощность (Вт · м -2 ), - расчетная площадь измерения, - температура горячего поля (K), и - температура холодного поля (К).

          3.2. Теоретическая расчетная модель

          В условиях установившейся теплопередачи, когда весь процесс теплопередачи не изменяет общее количество тепла, закон Фурье может быть выражен как где - теплопередача плотности теплового потока конструкции, - теплота Коэффициент передачи оболочки здания (Вт · м -2 K -1 ) - это сопротивление теплопередаче внутренней поверхности, равное 0.11 м 2 K Вт −1 , сопротивление теплопередаче внешней поверхности, которое составляет 0,04 м 2 K Вт −1 , сопротивление теплопередаче каждого материала (м 2 K W -1 ), представляет собой сопротивление теплопередаче оболочки здания, представляет собой толщину материалов (м) и представляет собой коэффициент теплопроводности каждого материала (Вт м -1 K -1 ).

          3.3. Модель расчета скорректированного значения

          Коэффициент теплопроводности материала является постоянной величиной в существующих теоретических расчетах и ​​численных расчетах, приведенных в литературе, без учета коэффициента теплопроводности материала при изменении температуры и влажности.Мы должны исследовать расчет истинного значения коэффициента теплопередачи и применить его к теоретическому расчету.

          3.3.1. Расчет коэффициента теплопроводности в реальных условиях эксплуатации

          Механизм теплопередачи строительных материалов стен аналогичен жидкостному, который основан на упругих волнах. Теплопроводность увеличивалась с увеличением температуры, а также на нее влияла влажность. Общее уравнение в случае реальных рабочих условий обычно выражается следующим образом: где - испытательное значение теплопроводности материала, - изменение теплопроводности, вызванное температурой, - изменение теплопроводности, вызванное влажностью веса, и - изменение теплопроводности. пробужденный от холода.

          Были рассчитаны материалы, вызванные перепадом температуры, весом, влажностью и замерзанием, соответственно. Затем материалы были рассчитаны в рабочей среде на влияние теплопроводности на температуру и влажность.

          Модель, используемая для описания влияния температуры и влажности на коэффициент теплопроводности неорганических вяжущих материалов, была [18]

          Испытания на теплопроводность проводились на основе стандартов испытаний теплопроводности цементного раствора и повторно используемого бетонного кирпича [16].Затем можно было бы рассчитать колебания теплопроводности материалов, вызванные температурой, весом, влажностью и замерзанием. Коэффициенты теплопроводности () (относительное изменение при изменении на 0 ° C) цементного раствора и повторно используемых бетонных кирпичей были рассчитаны как 0,7526 Вт · м −1 K −1 и 0,6160 Вт · м −1 K −1 соответственно.

          Влияние влажности на коэффициент теплопроводности шаблона EPS можно игнорировать [19]. Модель, используемая для описания влияния температуры на коэффициент теплопроводности шаблонов EPS, была [20] где - коэффициент теплопроводности неорганических связующих материалов при средней температуре, - коэффициент теплопроводности при 20 ° C, - коэффициент теплопроводности при 0 ° C. , - средняя температура материала

          .

          Расчет коэффициента теплопередачи для плоских и гофрированных пластин

          Во многих инженерных приложениях, связанных с сопряженной теплопередачей, таких как проектирование теплообменников и радиаторов, важно рассчитать коэффициент теплопередачи. Коэффициент теплопередачи, часто определяемый с помощью корреляций и эмпирических соотношений, дает информацию о теплопередаче между твердыми телами и жидкостями. В этом сообщении блога мы обсуждаем и демонстрируем, как программное обеспечение COMSOL Multiphysics® можно использовать для оценки коэффициента теплопередачи для геометрических форм пластин.

          Что такое коэффициент теплопередачи?

          Рассмотрим нагретую стену или поверхность, по которой течет жидкость. Теплопередача в жидкости в основном регулируется конвекцией. Точно так же конвекция является основным способом переноса тепла в случае двух жидкостей (через твердую поверхность), например, в теплообменниках. Скорость, с которой происходит передача тепла в обоих случаях, определяется разницей температур и коэффициентом пропорциональности, называемым коэффициентом теплопередачи .{\ prime \ prime} - тепловой поток, T_w - температура стенки, а T_ \ infty - характеристическая температура жидкости.

          Характерной температурой жидкости также может быть внешняя температура вдали от стенки или объемная температура в трубах.

          Когда объект окружен бесконечно большим объемом воздуха, мы предполагаем, что температура воздуха вдали от объекта является постоянной известной величиной. Коэффициент теплопередачи, оцениваемый в этом случае, называется коэффициентом внешней теплопередачи.

          При сделанном выше предположении, если мы внимательно посмотрим на стену (если толщина стены определена в направлении y , а y = 0 представляет поверхность / плоскость стены), становится ясно, что нет Состояние скольжения по стенке приводит к образованию застойной тонкой пленки жидкости. Следовательно, передача тепла через жидкость, непосредственно прилегающую к стене, происходит исключительно за счет теплопроводности.

          Математически (ссылка 1) это можно записать как:

          (2)

          q ^ {\ prime \ prime} = - k \ bigg (\ dfrac {\ partial T} {\ partial y} \ bigg) _ {y = 0}

          Здесь k - теплопроводность жидкости, при этом производная T оценивается в жидкости.

          Комбинируя уравнения (1) и (2), коэффициент теплопередачи можно рассчитать как:

          (3)

          h = \ dfrac {-k \ bigg (\ dfrac {\ partial T} {\ partial y} \ bigg) _ {y = 0}} {T_w {-} T_ \ infty}

          Расчет коэффициента теплопередачи в COMSOL Multiphysics®

          Практически сложно измерить градиент температуры у стены. Кроме того, становится важным проанализировать умный и недорогой в вычислительном отношении подход для понимания теплопередачи на стене.Поэтому обычно предпочтительны неаналитические способы расчета коэффициента теплопередачи.

          Один из распространенных подходов - использование конвективных корреляций, определяемых безразмерным числом Нуссельта. Эти корреляции доступны для различных случаев, включая естественную и принудительную конвекцию, а также внутренние и внешние потоки, и дают быстрые результаты. Однако этот подход можно использовать только для правильных геометрических форм, таких как горизонтальные и вертикальные стены, цилиндры и сферы.

          Когда речь идет о сложных формах, вместо этого можно рассчитать коэффициент теплопередачи путем моделирования явления сопряженной теплопередачи.

          Давайте теперь обсудим два разных случая и подхода:

          1. Расчет коэффициента теплопередачи при правильной геометрии (например, горизонтальной пластине) с использованием:
            • Анализ сопряженной теплопередачи
            • Конвективные корреляции; т.е. без учета потока
          2. Расчет коэффициента теплопередачи при нестандартной / сложной геометрии (например, гофрированная пластина)

          Обратите внимание, что режим потока является важным фактором, поскольку коэффициент теплопередачи зависит от скорости.В обоих случаях необходимо учитывать прагматические условия, такие как быстрый поток в нагнетательной системе или в устройстве охлаждения электронного чипа. Это указывает на то, что необходимо моделировать случаи как турбулентный поток, связанный с переносом тепла.

          Пример 1: Принудительная конвекция и поток мимо горизонтальной пластины

          Рассмотрим ситуацию моделирования обтекания горизонтальной плоской пластины длиной 5 м, которая подвергается постоянному и однородному тепловому потоку 10 Вт / м. 2 .Пластина помещается в воздушный поток со средней скоростью 0,5 м / с и температурой 283 К. На рисунке ниже показана схема постановки задачи, включая профили скорости и температуры для ламинарного потока внутри импульса (скажем, \ delta) и теплового пограничного слоя (\ delta {T}) соответственно.


          Схема ламинарного потока (вверху) и турбулентного потока (внизу) мимо горизонтальной пластины.

          Анализ сопряженной теплопередачи

          Численное решение получено в COMSOL Multiphysics с использованием интерфейса Conjugate Heat Transfer , который связывает поток жидкости и явления теплопередачи.Поле скорости и давление вычисляются в воздушной области, а температура вычисляется в пластине и в воздушной области.

          Распределение температуры внутри пластины и жидкости показано на рисунке ниже. Тепловые и импульсные пограничные слои, образующиеся внутри жидкой области, можно увидеть в области от стенки до 2 см над пластиной.


          Распределение температуры (график поверхности), изотерма при 11 ° C (красная линия) и поле скорости (стрелки), иллюстрирующие тепловой и импульсный пограничные слои рядом с поверхностью пластины (шкала анизотропной оси).

          По результатам моделирования можно оценить тепловой поток, используя соответствующую предопределенную переменную постобработки. Разделив его на разность температур (T_w-T_ \ infty), мы получим коэффициент теплопередачи (уравнение 3). Коэффициент теплопередачи вдоль пластины, полученный с помощью анализа сопряженной теплопередачи, нанесен на график в следующем разделе.

          Коэффициент теплопередачи на основе числовой корреляции Нуссельта

          В литературе имеется корреляция числа Нуссельта для принудительной конвекции мимо плоской пластины (см.1, например).

          В этом втором подходе та же модель решается без решения для потока; то есть, используя корреляции теплопередачи. Расчетная область ограничена твердым телом (пластиной). Потери тепла от горячей пластины к холодной жидкости определяются с помощью граничного условия Heat Flux . Это граничное условие содержит возможность определить коэффициент теплопередачи с использованием предварительно определенных корреляций чисел Нуссельта, как показано ниже. Обратите внимание, что эта корреляция предопределена в COMSOL Multiphysics.


          Настройки для граничного условия Heat Flux .

          Только с использованием этого подхода рассчитывается распределение температуры в пластине. Из коэффициента теплопередачи, определенного в граничном условии Heat Flux , можно оценить тепловой поток на поверхности пластины, q = h \ cdot (T_ \ infty-T).

          Оценка коэффициента теплопередачи

          Для обоих подходов, описанных выше, можно оценить коэффициент теплопередачи вдоль пластины.На рисунке ниже сравнивается тепловой поток, оцененный с использованием двух подходов.


          Сравнение коэффициента теплопередачи вдоль плоской пластины, оцененного с помощью моделирования сопряженной теплопередачи (синяя линия) и корреляции Нуссельта (зеленая линия).

          Мы можем видеть, что значение, полученное из корреляции числа Нуссельта, находится в хорошем согласии со значением, полученным при моделировании полного сопряженного теплопереноса.

          Представляет интерес количество тепла по пластине, которое получается в двух случаях:

          1. Корреляция числа Нуссельта: 50 Вт / м
          2. Сопряженная теплопередача: 49.884 Вт / м

          Для некоторых расчетов подход, основанный на корреляциях чисел Нуссельта, позволяет прогнозировать тепловой поток с достаточно хорошей точностью. Затем мы исследуем случай необычной формы, когда корреляции чисел Нуссельта получить нелегко, и единственный возможный подход - запустить моделирование сопряженной теплопередачи.

          Пример 2: Поток мимо гофрированной горизонтальной пластины

          Рассмотрим конфигурацию, аналогичную первому, за исключением того, что пластина имеет гофрированную верхнюю поверхность.На рисунке ниже схематически показано определение проблемы. В этой модели гофры верхней пластины рассматриваются в одном сечении геометрии. В остальном тарелка плоская.


          Схема обтекания горизонтальной пластины.

          Здесь поле течения у стенки имеет зоны рециркуляции, которые увеличивают скорость теплопередачи. На изображении ниже мы можем видеть распределение температуры и линии тока скорости.


          Распределение температуры в градусах Цельсия (поверхность) и поле скорости (линии тока).

          На левом графике ниже показан коэффициент теплопередачи по длине гофрированной пластины. При такой геометрии, как волнистая пластина, коэффициент теплопередачи зависит от температурных полей; поля скоростей; и геометрические параметры гофры, такие как высота. Следовательно, мы можем наблюдать повышенный коэффициент теплопередачи по сравнению с плоской пластиной (правое изображение ниже).

          Коэффициент теплопередачи по гофрированной пластине (слева) и по плоской пластине (справа).

          При рассмотрении сложной геометрии, содержащей гофрированные поверхности, подход с сопряженной теплопередачей может быть дорогостоящим в вычислительном отношении, и желательны альтернативные подходы. Хорошим приближением было бы снижение геометрической сложности путем представления поверхностей как негофрированных и экстраполяции коэффициента теплопередачи из этой геометрии гофрированной пластины с учетом геометрических параметров, таких как высота гофра, поля скорости потока и изменения температуры на поверхности.Интересно отметить, что если температура не является истинно изотермической или нет постоянного теплового потока, коэффициент теплопередачи все еще представляет интерес в заданном диапазоне для некоторых геометрий, пока не будет сохранена близость к исходной конфигурации.

          Для проверки мы можем рассмотреть простой случай, когда коэффициенты теплопередачи вычисляются по полям скоростей в геометрии гофрированной пластины. Данные могут использоваться для получения среднего коэффициента теплопередачи и могут быть экстраполированы на геометрическую модель плоской пластины.Полные потери тепла с поверхности или коэффициент теплопередачи, полученный при моделировании потока, можно исследовать, чтобы понять обоснованность приближений.

          Заключительные мысли

          В этом сообщении блога мы обсудили, как рассчитать коэффициент теплопередачи двумя способами. Решение сопряженной теплопередачи позволяет использовать встроенные переменные теплового потока, доступные в COMSOL Multiphysics. Используя граничное условие Heat Flux с корреляциями чисел Нуссельта, вы можете моделировать задачи, связанные с простыми формами.Мы также обсудили, как уменьшить геометрические сложности для получения коэффициента теплопередачи для сложных геометрических форм.

          Следующие шаги

          Узнайте больше о специализированных функциях моделирования теплопередачи в программном обеспечении COMSOL®, нажав кнопку ниже.

          Попробуйте подходы, описанные здесь, в следующих руководствах:

          Номер ссылки

          1. A. Bejan et al., Справочник по теплопередаче , John Wiley & Sons, 2003.
          .

          Conductive Heat Transfer

          Проводимость как теплопередача имеет место при наличии температурного градиента в твердой или неподвижной текучей среде.

          При столкновении соседних молекул энергия проводимости передается от более энергичных молекул к менее энергичным. Тепло течет в направлении понижения температуры, поскольку более высокие температуры связаны с более высокой молекулярной энергией.

          Кондуктивная теплопередача может быть выражена с помощью «закона Фурье »

          q = (к / с) A dT

          = UA dT (1)

          где

          q = теплопередача (Вт, Дж / с, БТЕ / ч)

          k = теплопроводность материала (Вт / м · К или Вт / м o C, БТЕ / (час o F ft 2) / фут))

          s = толщина материала (м, фут)

          A = площадь теплопередачи (м 2 , фут 2 )

          U = k / s

          = коэффициент теплопередачи (Вт / (м 2 K), Btu / (фут 2 ч o F)

          dT = t 1 - t 2

          = температурный градиент - разница - по материалу ( o C, o 9003 3 F)

          Пример - теплопроводная передача тепла

          Плоская стена изготовлена ​​из твердого железа с теплопроводностью 70 Вт / м o C. Толщина стены 50 мм, , длина и ширина поверхности 1 м на 1 м. Температура 150 o C с одной стороны поверхности и 80 o C с другой.

          Можно рассчитать кондуктивную теплопередачу через стену.

          q = [(70 Вт / м o C) / (0,05 м) ] [(1 м) (1 м)] [ (150 o C) - (80 o C)]

          = 98000 (Вт)

          = 98 (кВт)

          Калькулятор теплопроводности.

          Этот калькулятор можно использовать для расчета кондуктивной теплопередачи через стену. Калькулятор является универсальным и может использоваться как для метрических, так и для британских единиц измерения, если они используются последовательно.

          k - теплопроводность (Вт / (м · К), БТЕ / (час o F ft 2 / фут))

          A - площадь ) 2 , фут 2 )

          t 1 - температура 1 ( o C, o F)

          t 2 - температура 2 ( o C, o F)

          s - толщина материала (м, фут)

          Проводящая теплопередача через плоскую поверхность или стену со слоями из серии

          Тепло, проводимое через стену со слоями тепловой контакт можно рассчитать как

          q = dT A / ((s 1 / k 1 ) + (s 2 / k ) 2 ) +... + (s n / k n )) (2)

          , где

          dT = t 1 - t 2

          = разница температур между внутренней и внешней стеной ( o C, o F)

          Обратите внимание, что тепловое сопротивление из-за поверхностной конвекции и излучения не учитывается в этом уравнении .Конвекция и излучение в целом имеют большое влияние на общие коэффициенты теплопередачи.

          Пример - Проводящая теплопередача через стенку печи

          Стенка печи 1 м 2 состоит из 1,2 см внутреннего слоя нержавеющей стали , покрытого 5 см внешнего изоляционного слоя изоляционной плиты. Температура внутренней поверхности стали составляет 800 K , а температура внешней поверхности изоляционной плиты составляет 350 K .Теплопроводность нержавеющей стали составляет 19 Вт / (м · К) , а теплопроводность изоляционной плиты составляет 0,7 Вт / (м · К) .

          Кондуктивный перенос тепла через многослойную стену можно рассчитать как

          q = [(800 K) - (350 K)] (1 м 2 ) / ([(0,012 м) / (19 Вт / (м · К) )] + [(0,05 м) / (0,7 Вт / (м · К))] )

          = 6245 (Ш)

          = 6.25 кВт

          Единицы теплопроводности

          • БТЕ / (ч-фут 2 o Ф / фут)
          • БТЕ / (ч-фут 2 o Ф / дюйм)
          • БТЕ / (с фут 2 o Ф / фут)
          • БТЕ дюйм) / (фут² ч ° F)
          • МВт / (м 2 К / м)
          • кВт / (м 2 К / м)
          • Вт / (м 2 К / м)
          • Вт / (м 2 К / см)
          • Вт / ( см 2 o C / см)
          • Вт / (дюйм 2 o F / дюйм)
          • кДж / (hm 2 К / м)
          • Дж / (см 2 o C / м)
          • ккал / (hm 2 o C / м)
          • кал / (с см 2 o C / см)
          • 1 Вт / (м · К) = 1 Вт / (м o C) = 0.85984 ккал / (hm o C) = 0,5779 Btu / (ft h o F) = 0,048 Btu / (дюйм h o F) = 6,935 (BTu дюймов) / (фут² час ° F)
          .Коэффициент теплопередачи

          - Calculator.org

          Что такое коэффициент теплопередачи?

          В химии и машиностроении коэффициент теплопередачи используется для расчета теплопередачи между жидкостью и твердым телом, между жидкостями, разделенными твердым телом, или между двумя твердыми телами, и является обратным к теплоизоляции . Коэффициент теплопередачи выражается в единицах СИ Вт / (м 2 K) и рассчитывается следующим образом:

          h = ∆Q / (A ∆T ∆t)

          где h - коэффициент теплопередачи, ∆Q - подвод тепла в систему или потери тепла, A - площадь поверхности, по которой передается тепло, ∆T - разница температур между продаваемой поверхностью и окружающей средой, и ∆t - изменение во времени, включающее период времени, в котором произошла теплопередача.

          В зависимости от способа передачи тепла коэффициент теплопередачи рассчитывается различными способами. Большинство твердых веществ обладают известной теплопроводностью, которую можно использовать в качестве основы для расчета коэффициента теплопередачи. Очень распространенной инженерной проблемой является передача тепла между жидкостью и твердой поверхностью. Наиболее распространенный способ решения этой проблемы - разделение теплопроводности конвекционной жидкости на масштаб длины. Также принято вычислять коэффициент с числом Нуссельта (одна из множества безразмерных групп, используемых в гидродинамике).

          В условиях принудительной конвекции (тип теплопередачи, при котором движение жидкости создается внешним источником, а не просто плавучестью нагретой жидкости), можно определить коэффициент теплопередачи с помощью корреляции Диттуса-Боелтера. Это может быть полезно при разработке теплообменников, которые представляют собой устройства, предназначенные для передачи тепла от одной среды к другой в коммерческих целях. Одним из примеров теплообменника является радиатор в вашем автомобиле, но есть и многие другие.Теплообменники используются в холодильном оборудовании, кондиционировании воздуха, химических заводах и обогреве помещений, и это лишь некоторые из них. Хотя корреляция Диттуса-Боелтера не совсем точна, она полезна для некоторых приложений и, по оценкам, имеет точность в пределах 15 процентов. Используя корреляцию Диттуса-Боелтера, коэффициент теплопередачи можно рассчитать следующим образом с использованием двух дополнительных безразмерных групп, числа Рейнольдса и числа Прандтля:

          h = (k w / D H ) * Nu

          , где k w - теплопроводность жидкости, D H - гидравлический диаметр, а Nu - число Нуссельта, которое определяется по следующему уравнению:

          Nu = 0.023 Re 0,8 Pr n

          В этом уравнении Re - это число Рейнольдса, которое равно:

          Re = (м D H ) / (μ A)

          И Pr - число Прандтля, равное:

          Pr = (C p * μ) / k w

          Для числа Рейнольдса m равно массовому расходу, а A - площадь поперечного сечения потока, взятого из трубки. Для числа Прандтля C p равно теплоемкости (при условии постоянного давления), и в обоих уравнениях μ - это вязкость рассматриваемой жидкости.Число Рейнольдса является мерой относительной важности вязких и инерционных сил (которые вызывают турбулентность). Когда у нас есть все эти факторы, мы можем получить достойную оценку скорости теплопередачи через конкретный тип теплообменника, который мы планируем разработать.

          Уравнение для скорости теплопередачи Q записывается следующим образом:

          Q = 1 / ((1 / ч) + (т / к)) A ΔT

          где t - толщина стенки, через которую передается тепло, A - площадь передачи, а k - теплопроводность среды.

          Теплообменники во многом схожи с электрическими цепями. Тепловой поток аддитивен по параллельным «контурам» и обратно аддитивен по последовательно включенным процессам теплообмена. Таким же образом работает и коэффициент теплопередачи. Для параллельно соединенных процессов теплообмена общее значение h равно:

          h = h 1 + h 2 + h 3 + ... + h n

          , где каждый подпроцесс имеет свой коэффициент теплопередачи.Для последовательно соединенных процессов теплопередачи уравнение записывается как:

          ч = 1 / ч 1 + 1 / ч 2 + 1 / ч 3 + ... + 1 / ч n

          Добавьте эту страницу в закладки в своем браузере, используя Ctrl и d или используя одну из следующих служб: (открывается в новом окне) .

          Смотрите также