Расчет корпуса для динамика


Как измерить параметры Тиля-Смолла динамиков с помощью ПК и выбрать для них правильный корпус

Любой динамик предназначен для установки в корпус определенных размеров и конструкции (точнее сказать, акустического оформления). Если динамик установить в несоответствующий ему корпус (например, слишком малого объема или неподходящего акустического оформления), то играть такая колонка будет плохо. Будет глухой и плоский звук, отсутствие басов и/или верхов, искажения и призвуки, бубнение на одной частоте и т.п. Какое оформление требуется для конкретного динамика, определяют его параметры Тиля-Смолла (T/S параметры). Но проблема в том, что даже брендовые производители не всегда их указывают для всех моделей своих динамиков, не говоря уже о безродных китайских динамиках с Али. В обзоре будет показано, как самостоятельно их измерить с помощью простого кабеля и компьютера, а также рассчитать по полученным T/S параметрам правильные размеры и конструкцию корпуса под динамик.

Для измерения параметров Тиля-Смолла я подготовил следующие динамики (для всех из них T/S параметры производителем не указаны):

JBL CS760C ru.jbl.com/CS760C.html
6-1/2", 50W RMS/150W max., 55 Гц– 20 кГц, 4 ом, 92 дБ (2,83 В на 1 м)
Эти динамики стоят сейчас у меня в дверях машины. Один из них когда-то сломался (внутренний обрыв катушки) и я купил еще один комплект для замены. Если из такого неисправного динамика снять магнитную систему, из него можно сделать пассивный излучатель (ПИ) для повышения отдачи АС в области низких частот. Снятый магнит тоже пойдет в дело, о чем будет рассказано ниже.

JVC CS-J420X ru.jvc.com/mobile-entertainment/speakers/CS-J420X/
4', 21W RMS/210W max., 45 Гц– 22 кГц, 4 ом, 90 дБ/мВт
Это бюджетные брендовые автодинамики, купленные для экспериментов.

2 динамика 5W 8Ohm, один из которых уже установлен в свое акустическое оформление.

Измерения параметров Тиля-Смолла будем проводить с помощью программы AudioTester.

Также можно использовать программу Limp из пакета Arta Software, кабель в обоих случаях используется один и тот же, и результаты измерений обеих программ должны практически полностью совпадать — за подсказку благодарю Vairon и yopopt.

Программа AudioTester дает повторяемый результат. Я измерял один и тот же динамик на основном ПК, дополнительном ПК и ноутбуке. Все эти измерения показывают очень схожие результаты. Также результаты измерений AudioTester признаются Роспатентом, например, вот патент RU 2707905 (акустическая система с щелевым настраиваемым резонатором Гельмгольца).

Для измерений с помощью AudioTester требуется сделать несложный кабель с одним резистором. Готовим 2 куска экранированного кабеля (т.е. кабеля, состоящего из 2-х отдельных многожильных проводов с общей медной оплеткой, типа кабеля для наушников), 2 разъёма «джек» 3.5мм для подключения к ПК, резистор 10 ом, провода с крокодилами и/или с автоклеммами для подключения к динамикам. Для изготовления таких проводов лучше использовать акустический кабель достаточного сечения (я сделал их из кабеля 2х1.5мм2).

Схема кабеля:
Паяем такой кабель, фиксируем провода стяжками, затем закрываем этот узел термоусадкой. Чтобы не перепутать, на штекер для подключения к аудиовыходу ПК надеваем зеленую термоусадку:

Скачиваем программу с официального сайта www.audiotester.de/ и устанавливаем. На компьютере ставим громкость динамиков и микрофона 100% и отключаем все улучшайзеры, если включены (типа объемный звук, тонкомпенсация и т.д.). Полностью убираем усиление микрофона. Подключаем кабель к компьютеру. В программе нажимаем кнопку TSP.

Но прежде чем измерять динамики, нужно сделать калибровку для учета сопротивления изготовленного кабеля. Вместо динамика к другому концу кабеля подключаем резистор с сопротивлением, близким к динамику. Я использовал для калибровки резистор 6.6 ом. Нажимаем Start и смотрим по зеленой кривой, насколько правильно AudioTester измеряет сопротивление резистора. При необходимости изменяем значение в поле Impedance, пока не получим максимально точного соответствия:

Теперь можно приступать к измерению динамика. Насчет того, как это правильно делать, встречаются 2 противоположные точки зрения. Одни утверждают, что динамик нужно подвешивать за люстру в центре большой комнаты со стенами завешенными коврами). Другие доказывают, что динамик нужно наоборот зажимать в тиски. На мой взгляд, правильно делать так, как рекомендует сам автор AudioTester — динамик при измерении нужно положить на мягкую подушку диффузором вверх.

В видео ниже показано, как сделать настройки с учетом измеряемого динамика и выполнить процедуру измерений:

Итак, мы измерили параметры Тиля-Смолла нашего динамика. Что с ними делать дальше?

Сохраняем результаты в текстовый файл кнопкой List / Print и затем вбиваем эти значения в одну из программ расчета корпусов, например JBL SpeakerShop, Bassbox Pro, UniBox и т.п. Там выбираем желаемый тип корпуса под этот динамик и программа сама рассчитывает размеры выбранного корпуса.

Программу расчета корпусов мы запустим позже, а сейчас попробуем бегло проанализировать полученные T/S параметры нашего динамика JBL CS760C.

Самых главных параметров Тиля-Смолла всего три: Fs, Qts и Vas.

Fs — это собственная резонансная частота динамика (без корпуса). Частоты ниже Fs динамик воспроизводит плохо.

Qts — это полная добротность динамика. Значение Qts может определить тип акустического оформления, наиболее подходящего для динамика, а также склонность динамика к бубнению на своей резонансной частоте (чем выше добротность, тем больше будет бубнить, при некоторых условиях).

Есть разные классификации предназначения динамиков в зависимости от Qts, до сих пор к единому знаменателю по этому вопросу так и не пришли. Например, вот одна из таких классификаций:

Qts > 1,2 —динамики для открытых ящиков, оптимально 2,4;
0,6 < Qts < 1,2 — динамики для закрытых ящиков, оптимально 0,7–0,8;
0,4 < Qts< 0.6 — динамики для фазоинверторов, оптимум — 0,4;
0,2 < Qts< 0.8 — динамики для систем с пассивным излучателем;
Qts < 0.4 — динамики для рупоров.

Vas — это эквивалентный объём, по нему можно примерно прикинуть минимальный объем корпуса для установки динамика. Например, если Vas равен объему корпуса, то Fс и Qtс увеличится в 1.4 раза. А если объем корпуса будет больше Vas в 3-5 раз, это практически не ухудшит звучания акустики.

Итак, динамик JBL CS760C имеет T/S параметры: Fs=75.5 Гц, Qts=1.02, Vas=10.37 л.
Этот динамик автомобильный, предназначен для установки в двери. Высокая добротность этого динамика вполне уместна, т.к. внутренний объем двери не является полностью закрытым из-за щелей и технологических отверстий. Vas=10.37 л говорит о том, что, если ставить такой динамик в закрытый ящик, его объем должен быть от 30 литров минимум (например, куб с размерами 31х31х31см), что немало.

А есть ли способы еще сильнее уменьшить размеры корпуса без заметного изменения качества звучания АС?

Да, есть. Их как минимум три:

Панель акустического сопротивления (ПАС), позволяет снизить добротность динамика в корпусе, конструкция ПАС подбирается опытным путем;

Набивка корпуса демпфирующим материалом типа ваты или синтепона с плотностью до 24 г на литр объема, позволяет получить виртуальную прибавку объема корпуса до 40%;

Обратный магнит, позволяет снизить электрическую добротность динамика. Попробуем на практике проверить его эффективность. Приклеим снятый с неисправного динамика магнит к рабочему динамику. Магниты должны отталкиваться, а не притягиваться!

Измерим динамик с прикрепленным обратным магнитом:

Видим, что добротность динамика JBL CS760C уменьшилась с 1.02 до 0.84. Насколько существенно это позволит уменьшить объем корпуса, будет показано чуть ниже.

А пока продолжим наши измерения.

Динамик JVC CS-J420X

T/S параметры: Fs=135,9 Гц, Qts=2.39, Vas=1.57 л.

Да уж…. Кроме автомобиля, такой динамик можно поставить только в открытый ящик. Добротность 2.39 ни обратный магнит, ни ПАС до приемлемого уровня не понизит.

Noname динамик SJ H9053201, 8Ohm 5W

T/S параметры: Fs=420,5 Гц, Qts=4.96, Vas=0.13 л.

Этот динамик стоял в телевизоре, качеством звучания не блистал)

Noname динамик 55085-010, 8Ohm 5W (в корпусе)

Этот динамик я измерил просто из интереса). Он тоже из телевизора, имеет собственный корпус, который я снимать не стал. Корпус интересен тем, что имеет вибродемпфирующий элемент в форме конуса, перераспределяющий звуковые волны в закругленные углы корпуса:

Такое решение уменьшает вибрации и резонансы корпуса. Звучал этот динамик, в отличие от такого же по мощности и импедансу собрата выше, гораздо приятнее. Даже какие-то низы можно было услышать.

Расчет корпуса под динамик на основе параметров Тиля-Смолла

Имея на руках T/S параметры интересующего динамика, можно приступать к расчету корпуса для него. Программ расчета корпусов достаточно много: JBL SpeakerShop, Bassbox Pro, UniBox и т.п. Эти программы, а также дополнительные материалы по теме можно скачать например здесь doctorbass.ru/zagruzki/

Попробуем просчитать корпус для динамика JBL CS760C в программе JBL SpeakerShop.

Создаем новый проект, копируем T/S параметры из текстового файла AudioTester в SpeakerShop. Программа просчитывает по ним оптимальный корпус в вариантах фазоинвертора (Vented Box) и закрытого ящика (Closed Box) и строит расчетную АЧХ (амплитудно-частотную характеристику) для каждого варианта. Нажимаем Ctrl-D и появляется окно с объемом и размерами корпуса. Всего в SpeakerShop 21 вариант корпусов на выбор: прямоугольный, куб, призмы разной формы, эллипсоид, сфера, конус, цилиндр и т.д. Как видим ниже, для динамика JBL CS760C размеры получаются немалыми:

Попробуем их уменьшить с помощью заполнения корпуса демпфирующим материалом. Выбираем заполнение “normal” и объем закрытого ящика уменьшается почти в полтора раза, АЧХ при этом практически не меняется:

Теперь проверяем эффективность обратного магнита для дальнейшего уменьшения объема корпуса. Создаем новый проект, копируем в него T/S параметры динамика с обратным магнитом и смотрим:

Объем закрытого ящика уменьшается еще в два раза, АЧХ при этом также существенно не меняется.

Таким образом, в нашем примере с динамиком JBL CS760C, использование заполнения и обратного магнита позволяет снизить объем корпуса почти в 3 раза, с 43.2 литров до 14.9 литров, без существенного изменения АЧХ. При этом добротность в корпусе будет 0.96.

Магниту из неисправного динамика мы нашли применение, теперь попробуем найти применение и оставшейся части этого динамика, т.е. корзине с диффузором.

Из нее можно сделать пассивный излучатель (Passive Radiator). Такой ПИ устанавливается в одном корпусе с основным динамиком и оба диффузора работают синфазно, но диффузор ПИ настраивается на более низкую резонансную частоту, что повышает отдачу АС в области низких частот:

Для расчета такого пассивного излучателя в SpeakerShop нужно ввести 3 параметра: объем ящика Vb, эквивалентный объем Vap (его значение такое же как Vas) и резонансную частоту Fp. Ранее при измерении T/S параметров с помощью AudioTester мы уже настраивали этот динамик на более низкую резонансную частоту 45 Гц добавлением груза 20 г. Поэтому вводим Fp=45 Гц и смотрим, какая АЧХ пассивного излучателя у нас получается:

Поднятая в области НЧ АЧХ фазоинвертора и пассивного излучателя дает мощный жесткий бас (то самое «мясо»). А равномерно падающая АЧХ закрытого ящика делает басы чистыми и прозрачными, но относительно слабыми. Такое звучание больше понравится музыкальным веганам).

Подводя итог, программа JBL SpeakerShop позволяет на основе T/S параметров рассчитать размеры корпуса под динамик в нескольких акустических оформлениях и показать в виде АЧХ звучание каждого из вариантов.

Резюме обзора

Какое оформление и размеры корпуса требуются для конкретного динамика, определяют его параметры Тиля-Смолла (T/S параметры). Если эти параметры неизвестны, их можно определить самостоятельно с помощью самодельного кабеля и компьютера. В обзоре подробно описана процедура измерений T/S параметров при помощи программы AudioTester, измерено 4 разных динамика, показано как влияют значения T/S параметров на конструкцию и размеры корпуса динамика. Рассмотрен расчет корпуса для динамика на основе T/S параметров в программе JBL SpeakerShop, приведены способы уменьшения размеров корпуса (заполнение демпфирующим материалом, обратный магнит) и показана их эффективность. Также описан расчет пассивного излучателя, который можно сделать из динамика без магнита.

Спасибо за просмотр этого обзора! Буду рад, если какая-то информация окажется вам полезной.

Расчёт корпуса и фильтров акустической системы

Конструирование акустических систем по готовым чертежам дело, конечно, увлекательное, но элемент творчества при этом, как ни крути, отсутствует. Вот если бы овладеть основными принципами построения АС, а затем все самому рассчитать и сделать из того, что есть под руками, — вот был бы класс! Это возможно, если взять несколько уроков у опытного мастера. Сегодня — первое занятие.

Все любители и специалисты, заинтересованные в достоверном воспроизведении звука, знают, что без хороших акустических систем не обойтись. Поэтому особенно озадачивают противоречия между различными взглядами на критерии качества АС. Ещё менее ясно, какие методы создания АС надежнее и приводят к приемлемым результатам.

Даже начального опыта прослушивания достаточно, чтобы заметить очень большую разницу между звучанием одной и той же музыки на разных моделях. При этом основной параметр — амплитудно-частотная характеристика (АЧХ) — почти всегда близок к идеалу, если верить данным фирм-производителей.

Большинство меломанов не может самостоятельно измерить АЧХ и приходит к выводу: проблема АЧХ практически решена, качество воспроизведения звука зависит от конструкции и материалов динамиков, корпусов, кроссоверов. Например: катушка без сердечника — хорошо, с сердечником — хуже. Или: корпус весом в 40 кг лучше, чем 20-килограммовый, при тех же габаритах и т.д.

Разумеется, оспаривать влияние динамиков, корпусов, элементов кроссовера, кабелей внутренней разводки, звукопоглотителей и прочих составляющих было бы ошибкой, но всё ли в порядке с АЧХ? Независимые измерения, например, в хорошо оснащённых лабораториях авторитетных зарубежных и отечественных аудиожурналов, не подтверждают оптимистических параметров, заявленных производителями.

На практике каждая модель АС имеет свою кривую АЧХ, разительно отличающуюся от других разновидностей колонок, причем это относится к любой ценовой группе. Наблюдаемая разница многократно превосходит порог заметности, известный из психоакустики, ее просто невозможно не услышать. И слушатели её, конечно, замечают как различие тембрального баланса при воспроизведении одних и тех же композиций разными АС. Идентифицировать искажения тембра с проблемами равномерности АЧХ нелегко, ведь перед глазами — ровные, будто по линейке нарисованные характеристики от изготовителя.

Не факт, что эти изумительные графики — обман. Просто для рекламы измерения производятся по методикам, обеспечивающим «благообразный» вид кривых. Например, при повышенной скорости сканирования рабочего диапазона в сочетании с высокой инерционностью, то есть усреднением пиков и провалов при регистрации зависимости звукового давления от частоты.

Производителей можно понять, в конце концов, все мы хотим выглядеть несколько лучше, чем на самом деле, и поэтому причёсываемся, умываемся и т.д. перед ответственными встречами.

Гораздо интереснее другое: почему одна АС с «плохой» АЧХ звучит хорошо, а другая, может быть, обладающая менее безобразной характеристикой, — гораздо хуже? Независимые, более «честные» измерения выявляют несовершенство передачи тембрального баланса из-за особенностей АЧХ, но не помогают интерпретировать, расшифровать смысл «перегибов» и дисбалансов характеристик, раскрыть связь между поведением кривой и конкретными особенностями звучания АС. Вот подходящее сравнение: кардиограмма ничего не говорит обычному человеку, тогда как врач-специалист способен прочитать по ней состояние пациента.

Наша сегодняшняя задача — научиться анализировать АЧХ. Начнём с самого общего вопроса. Почему, обладая всем необходимым, разработчики не создают идеальной, одинаково хорошо звучащей акустики. Ведь идеал, эталон — только один! Очевидно, что все колонки, близкие к нему, будут звучать очень похоже. Существует ряд общепризнанных методик обеспечения «ровной» АЧХ, и одна из основных — настройка АС в заглушенной, безэховой камере. Есть и другие, вроде бы логичные и адекватные методы, например, настройка по импульсным сигналам. Но работая по одинаковым алгоритмам, специалисты каждый раз получают разный результат. Вспомните откровения авторитетных зарубежных мастеров, опубликованные в аудиопрессе: «… обеспечив идеальную АЧХ в звукомерной камере, мы потом «портим» эту характеристику для получения приемлемого звучания в обычных условиях…». Не пора ли прекратить молиться на равномерность АЧХ с точки зрения некой общеизвестной методики измерения?

Ведь любой способ измерения в науке и технике неизбежно даёт целый комплекс разносортных ошибок. В нашем случае самые вредные ошибки — методические, то есть связанные с несовершенством самого подхода. Например, где располагать микрофон относительно АС в звуковой камере? На акустической оси? А где эта ось? Перед ВЧ-динамиком? А если он воспроизводит начиная с 8 кГц? Тогда, видимо, точнее мерить на оси СЧ-динамика? А если сместить микрофон на 5 см выше? Получим совсем другую АЧХ. На какую ориентироваться? И почему мы думаем, что ухо слушателя окажется именно там, где находился микрофон?

Кроме того, на НЧ и нижней середине АС активно взаимодействует с полом, влияние которого в безэховой камере отсутствует.

Об интеграции излучения АС с помещением прослушивания в данный момент даже и разговор не будем начинать. Это взаимодействие очень сильно влияет на звучание, но его конкретные проявления бесконечно разнообразны, поэтому не умещаются в «ложе» какой-либо математической модели, с достаточной точностью необходимой для действительно высокого качества воспроизведения.

Ещё интересный факт: в реальном помещении суммарная АЧХ двух АС стереопары, даже при сильном усреднении, сильно отличается от АЧХ одной АС. Традиционные методики настройки АС не учитывают этого важного обстоятельства. Это недопустимо, так как главные персоны в музыке — солисты — чаще всего локализуются в центре звуковой сцены, то есть — воспроизводятся обеими АС.

Можно сделать вывод: при таком обилии методических ошибок обычные способы контроля АЧХ дают неправильную характеристику для реально очень ровных АС (например, Audio Note, Magnepan и т.д.). С другой стороны, крайне подозрительно выглядят полученные по ненадёжным методикам слишком гладкие АЧХ. В этом случае ошибки измерений скомпенсированы специально сформированной характеристикой, которую разработчик обеспечивает, слепо доверяя не оправдавшим себя на практике способам измерений.

Меньше всего мне хотелось бы заменять веру в одни несовершенные принципы верой в другие, мои. Они тоже далеко не идеальны, в них присутствуют заметные методические ошибки, только менее грубые.

Залог прогресса — понимание недолговечности роли достигнутых знаний и умений, готовность воспринимать, в процессе практической работы и исследований, новые открытия. Надо уметь пересматривать подходы к достижению лучших результатов, если количественный рост позволяет совершить качественный скачок.

Итог работы зависит от методов и развития личности создателя АС. Известны превосходные изделия, рожденные в рамках традиционных подходов, при условии высочайшего класса и опыта разработчиков.

Моя цель — вооружить всех желающих достаточно эффективной методикой создания АС с приемлемым звучанием. Длинное вступление было необходимо для того, чтобы обратить ваше внимание на факторы, мешающие развивать искусство настройки АС.

Мне бы хотелось передать свой опыт, не тратя на это непомерных «писательских» усилий. Поэтому буду рассказывать только о добытых на практике фактах и методах работы, без обоснований и теоретических объяснений. Мой принцип — уверенно излагать своё мнение можно, если имеется аудиосистема, хорошим звучанием подтверждающая рекомендации автора. Для доступности расчёты и приёмы настройки максимально упрощены, без существенного вреда для результата.

Урок первый. Корпус

В первую очередь ограничим необъятную тему. Рассмотрим разработку и настройку двух полосных АС с фазоинвертором (ФИ). Такой тип легче «поддаётся» новичкам. Договоримся, что озвучиваем жилую комнату 10 — 20 м². Это определяет выбор диаметра НЧ/СЧ-динамика. В этом случае оптимальный диаметр диффузора — 10 — 20 см (примерно). Паспортная мощность (100 часов разового шума без повреждения громкоговорителя) — 20 — 60 Вт. Чувствительность — 86 — 90 дБ/Вт/м. Резонансная частота (вне корпуса) — не выше 60 Гц. Если вас устроит нижняя граничная частота (готовой АС) 100 Гц, можно брать динамик с резонансом 80 — 100 Гц.

Кстати, если АС без завала воспроизводит хотя бы от 100 Гц, звучание вполне фундаментально и «весомо», только иногда исчезают некоторые необязательные, но очень желательные элементы звуковой картины. Их можно восстановить сабвуфером, но чтобы при этом не испортить звук, надо набраться опыта его согласования с сателлитами.

Не обольщайтесь по поводу паспортных данных недорогих АС, свидетельствующих о воспроизведении НЧ от 30 до 40 Гц. Реально в формировании звуковой картины участвуют только те низкие ноты, которые отыгрываются без «завала». Всё, что имеет спад хотя бы 4 — 5 дБ, маскируется «верхним басом» (80 — 160 Гц), поэтому для большинства АС воспринимаемый на слух диапазон начинается с 50 — 80 Гц. Мы же привыкли думать, что это 30 — 40 Гц, поскольку ориентируемся на паспортные данные с допустимым отклонением -8 — -16 дБ. Повнимательнее посмотрите в аудиопрессе на реальные частотные характеристики колонок. Отмерьте, в соответствии с приведённым масштабом, -3 дБ от среднего уровня, и вы увидите, что даже крупные напольные АС эффективно работают где-то от 50 Гц.

Если диаметр диффузора — 10 — 12 см, чувствительность — 86 — 88 дБ/Вт/м, а мощность — 20 — 30 Вт (типичные параметры недорогого динамика), то о «домашней дискотеке» придётся забыть. С другой стороны, громкоговорители минимального диаметра нередко имеют более равномерную АЧХ, чем большие.

«Малыши» лучше по ширине и равномерности диаграммы направленности. Интересно, что одна из высочайших по качеству АС фирма System Audio принципиально использует только маленькие мидбасовые динамики. Полная добротность современных небольших НЧ-головок обычно составляет 0,2 — 0,5.

Не надейтесь на расчёты низкочастотного оформления, практические результаты им соответствуют недостаточно точно. Опыт показывает: лучше выбрать динамики с добротностью больше 0,3 — 0,4, иначе, даже с фазоинвертором, трудно обеспечить приемлемый бас. Для таких громкоговорителей имеет смысл изготавливать корпуса объёмом, примерно равным эквивалентному объёму громкоговорителя.

Очень ориентировочно для рекомендуемых по параметрам динамиков эквивалентный объём соответствует диаметру:

10 см — ≈ 18 литров;

16 см — ≈ 26 литров;

20 см — ≈ 50 литров.

В качестве базисного варианта рассмотрим корпус с ФИ для громкоговорителя диаметром 16 см. Объём — 26 литров. Площадь сечения ФИ — 44 см². Длина трубы ФИ — 20 см. Частота настройки — около 40 Гц. Площадь сечения ФИ должна составлять 20 — 25% от площади диффузора Sд.

Sд = π • (d/2)²,

где d — диаметр диффузора, ограниченный серединой подвеса (рис. 1).

 

Рис. 1

Если необходимо пересчитать габариты трубы ФИ для другого «литража» (другой диаметр динамика), сохраняя частоту настройки, действуйте в соответствии с примерами:

1. Громкоговоритель d = 9 см, Эквивалентный объём (Vэ) ≈ 8 л. 8 литров меньше 26 литров в 3,25 раза. Надо скомпенсировать разницу изменением длины (l) и площади (Sфи) трубы ФИ, иначе частота резонанса ФИ резко повысится.

Понижают частоту настройки Fфи увеличением lфи и снижением Sфи.

Оптимальная Sфи для динамика площадью:

Sд = π (9 см/2)² = 3,14 • (4,57 см)² ≅ 63,6 см²

находится в диапазоне:

Sфи ≈ 63,6 см²/5 … 63,6 см²/4 ≅ 13 см² … 16 см².

В данном случае уменьшение Sфи вносит вклад в понижение Fфи в

44 см²/(13 см² … 16 см²) ≈ 2,75 … 3,38 разa,

что вполне компенсирует изменение объёма АС в 3,25 раза.

Кстати, компенсировать снижение объёма увеличением длины трубы ФИ для маленького корпуса (V = 8 литров) невозможно. Тем более что от внутреннего среза трубы ФИ до ближайшего препятствия (до стенки корпуса АС) должно быть свободное расстояние не менее 8 см (в крайнем случае — 5 см). То есть один из габаритов корпуса (параллельный оси трубы ФИ) должен быть равен lфи (20 см) + 8 см (свободное пространство) + примерно 3 см (толщина двух стенок корпуса) = 31 см.

Для 8-литрового корпуса такой большой размер может быть только высотой. Возможная конструкция щелевого ФИ с прямоугольным сечением трубы показан на рис. 2а.

Рис. 2

Это очень непрактичная конструкция, так как требуется установка на специальную подставку, не загораживающую выход ФИ. Если вывести порт наверх, установка АС упростится, но вид сверху ухудшится, кроме того, колонка превратится в отличную ловушку для пыли, сора и мелких предметов.

Очень удобна конструкция, показанная на рис. 2б. Однако она требует увеличить высоту до 31 см + 8 см = 39 см. Это не всегда допустимо.

Можно изготовить корпус в виде глубокой «буханочки», с наибольшим размером — в глубину (рис. 2в).

Если не удаётся обеспечить нужную длину трубы, можно:

во-первых, выбрать минимальную

Sфи = Sд / 6; Sфи = 63,6 см² / 6 ≈ 10,6 см²;

во-вторых, несколько уменьшить lфи (≈ на 30 %), пожертвовав повышением Fфи до ≈ 50 — 60 Гц.

Уменьшение Sфи до 10,6 см² снизит эффективность ФИ и, соответственно, увеличит «завал» отдачи в диапазоне 40 — 60 Гц.

Рост Fфи при уменьшении lфи допустим, так как резонансная частота динамика диаметром 10 см выше, чем у громкоговорителя 16 см. Это значит, что ФИ с резонансом в 55 Гц не просуммирует свой подъём НЧ с резонансом динамика в ящике (≈ 70 — 90 Гц в данном случае) и не будет вредного для звучания подъёма на НЧ в области 50 — 100 Гц, который мог бы возникнуть, например, при укорочении ФИ для корпуса с динамиком 16 см.

Итак, для 8-литрового ящика и громкоговорителя диаметром 10 см вполне нормально выбрать lфи ≅ 14 см, Sфи ≅ 13 см².

2. Громкоговоритель d = 18 см, эквивалентный объём (Vэ) ≈ 50 л. 50 литров больше, чем 26 литров, в 1,92 раза.

Оптимальная Sфи для динамика площадью:

Sд ≅ 3,14 • (18 см / 6)² ≈ 254,3 см²

находится в диапазоне

Sфи ≈ 254,3 см²/5 … 254,3 см²/4 ≈ 51 см² … 64 см².

Увеличение Vэ в 1,92 раза сильнее влияет, чем увеличение Sфи в 1,45 раза. В целом Fфи понижается ориентировочно до 35 Гц. Так как резонансная частота динамика (Fд) диаметром 20 см ниже, чем Fд диаметром 16 см, то снижение Fфи — положительный фактор. Не стоит компенсировать это уменьшением lфи.

Опытные профессионалы способны точно настраивать параметры фазоинверсного акустического оформления, добиваясь максимально плоской АЧХ в диапазоне от нижней граничной частоты АС до 125 — 200 Гц. Любителю или новичку не стоит тратить на это особых усилий.

В дальнейшем я поясню, как проконтролировать полученную АЧХ на НЧ и как устранить недопустимые отклонения, если таковые обнаружатся. Кроме того, влияние на звучание неидеальности характеристики в области НЧ сильно зависит от соотношения уровня воспроизведения баса по сравнению со средними частотами. Нельзя забывать, что из-за взаимодействия АС с реальным помещением АЧХ в нижнем регистре в любом случае будет очень неравномерной.

Главные усилия необходимо сосредоточить на настройке желаемой АЧХ в области СЧ и балансировке между НЧ, СЧ и ВЧ. На первом этапе создания АС — при разработке корпуса, достаточно учесть следующие рекомендации.

Корпус должен молчать. В идеале воспроизводят звук только громкоговорители, но в реальной жизни корпус откликается на их работу. Переизлучение звука стенками ящика вносит искажения.

Один из простейших способов улучшения виброзащиты корпуса — увеличение толщины стенок. Здесь следует знать меру, прослушивание показывает, что начиная с некоторого значения эта мера даёт незначительноё улучшение звучания. Для полочных АС вполне достаточно будет 16 — 8 мм ДСП или ДВП. Выгодно укреплять корпус изнутри рёбрами жёсткости. Вариант их практического использования показан в моей статье «Повторение возможно» в «Практике» №2(4)/2002, июль).

Там же достаточно подробно изложены рекомендации по следующим вопросам:

  • размещение звукопоглощающих материалов внутри корпуса;
  • особенности изготовления фильтров;
  • как самостоятельно сделать кабели для внутренней разводки очень высокого качества;
  • требования к герметизации корпуса;
  • минимальные сведения, необходимые для выбора типа конденсаторов.

В упомянутой статье также рассмотрены вопросы выбора динамиков и затронуты некоторые другие проблемы. Имеет смысл отнестись к этому как к части изложения моих методов работы, поэтому повторяться не стану.

Разумеется, существует много способов виброзащиты корпуса АС. Они приведены, например, в книге «Высококачественные акустические системы и излучатели» (И.А. Алдошина, А.Г. Войшвилло. — М.: Радио и Связь, 1985.). Практика показывает, что 16-миллиметровые стенки, укреплённые рёбрами жёсткости, обеспечивают достаточную виброзащиту.

Абсолютных истин нет. У акустически мёртвых корпусов есть альтернатива — использование массива различных пород дерева, каждая из которых обладает собственным звучанием. Это — трудный путь с технологическими и творческими проблемами. Он не для новичков, здесь требуется высшая квалификация в области деревообработки, тонкое восприятие музыки, упорство в поиске приемлемых вариантов исполнения корпуса. Иногда таким образом удаётся создать превосходные АС.

Урок второй. Фильтры

Если вы думаете, что фильтр это просто схема, разделяющая сигнал на несколько частотных полос для соответствующих громкоговорителей, то вынужден буду вас разочаровать. Всё гораздо сложнее. Простой кроссовер нужен для идеальных динамиков с ровной АЧХ по звуковому давлению, но таковых, к сожалению, не существует. В лучшем случае некоторые типы динамиков позволяют обеспечивать приблизительно приемлемую балансировку АЧХ при лобовом использовании кроссоверов.

Положение усложняется из-за сложного взаимодействия громкоговорителей в полосе передачи эстафеты от низкочастотного к более высокочастотному. Например, имеем замечательно ровные в своих полосах СЧ и ВЧ-головки с аккуратными спадами АЧХ вне полос, а при совместной работе получаем ужасную АЧХ. Особенно проблематично для новичка состыковать НЧ и СЧ-динамики. Приёмы такого бесшовного соединения — тема отдельной статьи. Для начала необходимо набраться опыта, настраивая двухполосную АС.

Даже самые простые фильтры — мощный инструмент в умелых руках, позволяющий приблизить АЧХ реальной АС к желаемому идеалу. Для НЧ/СЧ-головок фильтры первого порядка (катушка индуктивности, включенная последовательно с динамиком) чаще всего не подходят. Они недопустимо деформируют АЧХ в полосе пропускания, заваливают середину, делая звучание тусклым, неритмичным, монотонно гудящим. В некоторых случаях такой фильтр позволяет чуть скорректировать АЧХ в верхней части диапазона, воспроизводимого НЧ/СЧ-головкой. При этом частота среза такого фильтра близка верхней частоте динамика.

У редких головок наблюдается рост отдачи, пропорциональный повышению частоты сигнала на протяжении нескольких октав. Сбалансировать АЧХ в этих случаях можно индуктивностью фильтра первого порядка, но чаще для этого применяют фильтры второго порядка. Они позволяют исключить сильные искажения АЧХ в полосе пропускания.

Подбором сочетаний величин ёмкости и индуктивности фильтра второго порядка можно обеспечить в полосе около частоты среза спад или подъём АЧХ, используя схему в качестве эквалайзера. Это — один из методов оптимизации АЧХ.

На рис. 3 показан фильтр второго порядка. Ёмкость включена параллельно динамику.

Рис. 3

Первое приближение

Рассчитаем значения L1 и С1 для фильтра без подъёма или спада на частоте среза. Поверим значению импеданса, приведённому производителем. Если бумажек нет, померяйте сопротивление по постоянному току и умножьте результат на 1,25. Обозначим полученное значение просто R.

L1 = R / (2π • Fc),

где Fс — частота среза,

C1 = 1 / ((2π • Fc)² L1).

Например: R = 4 Ом, Fс = 1,6 кГц.

L1 = 4 / (6,28 • 1.6 • 10³) = 3,98 • 10-4 H = 0,398 mH = 398 μH,

C1 = 1 / [(6,28 • 1,6 • 10³)² • 3,98 • 10-4] = 2,49 • 10-5  F = 24,9 μF.

Для справки:

Fc = 1 / (2π √L1 C1).

В этом случае модули (величины без учёта фазы) сопротивления L1 и C1 на частоте Fс равны R, то есть 4 Ом. Кстати, на частоте среза модули сопротивления L1 и C1 всегда равны.

Если выравнивание АЧХ требует подъёма на Fc, скажем, на 1 дБ, то есть примерно но 10%, необходимо снизить модули сопротивления L1(|ZL1|) и C1(|ZC1|) примерно на 10% по сравнению с R = 4 Ом, то есть до 4 Ом x 0,9 = 3,6 Ом.

L1 = 3,6 / (6,28 • 1,6 • 10³) = 3,58  10-4H = 0,358 mH = 358 μH.

C1 = 1 / [(6,28 • 1,6 • 10³)² • 3,58 • 10-4] = 2,77 • 10-5 F = 27,7 μF.

Частота среза остаётся прежней, но на Fс на головку подаётся ≈110% сигнала за счёт повышенного потребления тока от усилителя и преобразования его «звенящим» фильтром с добротностью больше единицы в форсированный сигнал на головке.

Если надо «завалить» область около Fc на 1 дБ, то нужно пересчитать фильтр, как будто его нагрузка — сопротивление динамика примерно 1,1 x 4 Ом = 4,4 Ом.

Проще получить нужные значения, увеличив L1 и уменьшив С1. Тогда Fc не изменится, а |ZL| и |ZC| будут равны 4,4 Ом.

L1 = 398 mН x 1,1 = 438 mН.

С1 = 24,9 mF x 1,1 = 22,64 mF.

Для справки:

|ZL1| = 2π • F • L1, |ZC1| = 1 / (2π • F • C).

Учтите, что при необходимости увеличения отдачи в области около FC придётся смириться с падением импеданса АС в этой же области.

Падение импеданса необходимо контролировать. Попробуйте следующий простой способ.

1 этап

Подключите к выходу вашего усилителя цепь, показанную на рис. 4а.

Рис. 4

На этом рисунке значок «+» соответствует красной клемме, а «-» — чёрной. На результаты измерений перемена полярностей не влияет.

Подайте на вход усилителя синусоидальный сигнал частотой 1 кГц от генератора. Регулятором громкости усилителя и регулятором выходного уровня генератора установите на выходных клеммах усилителя ≈1 В действующего напряжения. Для этого вам понадобится вольтметр, способный измерять действующее значение напряжения в области звуковых частот.

Переключите вольтметр для измерения напряжения на выходах резистора R2. Прибор покажет ≈38,5 мВ. Подрегулируйте уровень сигнала до показаний вольтметра ≈40 мВ.

2 этап

Подключите вашу АС вместо R2. Плавно изменяйте частоту сигнала на выходе генератора. Вы увидите, что показания вольтметра меняются. Эти изменения пропорциональны частотно-зависимому значению импеданса АС. Можно зарисовать измеряемую характеристику: по горизонтальной оси будет шкала частоты, по вертикальной — уровня напряжения. И то и другое выполняется в логарифмическом масштабе. (Пример пустого бланка будет опубликован в следующем номере «Практики AV».) Особенно внимательно ищите минимумы напряжения, плавно меняя частоту. Эти точки на характеристике соответствуют минимумам импеданса АС.

С достаточной точностью можно считать, что значение импеданса |ZAC| равны показаниям вольтметра, поделённым на 10.

Например, 40 мВ соответствует 4 Ом, 30 мВ — 3 Ом. Если у вас нет чувствительного вольтметра, то поможет хороший тестер. В режиме измерения переменного напряжения тестер является вольтметром. Его показания верны до 2 — 5 кГц, выше может быть существенная погрешность. Сверьтесь с паспортом тестера. Кроме того, не все модели тестеров позволяют измерять с хорошей точностью сигналы величиной десятки милливольт. В этом случае можно установить на клеммах усилителя выходной сигнал не 1, а 10 В. В режиме наших измерений усилитель нагружен на сопротивление более 100 Ом. Такая высокоомная нагрузка позволяет развить 10 В действующего напряжения даже большинству маломощных усилителей, причём без перегрева.

К сожалению, при 10 В на выходе есть опасность сжечь резистор цепи, обеспечивающей устойчивость, который присутствует в схемах многих усилителей. Поэтому не стоит проводить измерения на частотах выше 3 кГц.

Понятно, что в режиме «10 вольт» на пробном резисторе R2 надо установить не 40 мВ, а 400 мВ. Соответственно, шкала напряжения будет проградуирована от 125 мВ до 6000 мВ (6 В). При этом показания вольтметра делим на 100 и получаем величину импеданса АС. Например, 400 мВ соответствует 4 Ом.

(Продолжение в следующем номере)


ПрактикаAV #3/2002

Расчет корпусов акустических систем

Создано 06.10.2006 19:27. Обновлено 13.04.2020 09:57. Автор: Салона АВ.

«Володя, будешь на складе — захвати порты для фазиков …»
(подслушано в одной из московских установочных студий)

Когда АвтоЗвук был еще маленьким и сидел под крылом Салона АВ, вышли в свет две первые части трилогии о сабвуферах — о том, чего ждать от разных типов акустического оформления и как подобрать динамик для закрытого ящика.

Значительная часть тех, кто, обдумывая житье, решил с пониманием отнестись к басовому вооружению своего автомобиля, этим, в принципе, уже могла бы обойтись. Но не все. Поскольку существует как минимум еще один, чрезвычайно популярный тип акустического оформления, по распространенности не уступающий закрытому ящику.

Фазоинвертор в отечественной литературе, bass reflex, ported box, vented box — в англоязычной — все это, по сути, звукотехническая реализация идеи резонатора Гельмгольца. Идея проста — замкнутый объем соединяется с окружающим пространством с помощью отверстия, содержащего некоторую массу воздуха. Вот именно существование этой массы — того самого столба воздуха, который, по утверждению Остапа Бендера, давит на любого трудящегося, и производит чудеса, когда резонатор Гельмгольца нанимают на работу в составе сабвуфера. Здесь мудреная вещь имени германского физика приобретает прозаическое имя тоннеля (по-буржуйски port или vent) .

Расчет корпусов TQWP и чертежи трубы Войта

Создано 22.10.2019 11:58. Обновлено 17.04.2020 08:50. Автор: Свиридов И..

Данная программа представляет собой EXCEL-евский файл, в котором собран инструментарий для расчёта корпусов Tapered Quarter Wave Pipes (TQWP) или свернутый рупор или труба Войта, который описал данное акустическое решение в 30-х годах XX века.

За основу был взят файл John Rutter по расчетам David B. Weems, сделана попытка минимизировать разброс параметров вычислений допущеных в этом файле, произведена адаптация под метрическую систему мер.

Также автор добавил в TQWP программу блок расчёта деталей корпуса с возможностью вывода на печать эскизов с размерами.

Программа адаптирована под два режима просмотра 800х600 и 1024х768, для выбора режима на основных листах программы имеются кнопки.

Лист «Расчет TQWP»

Блок расчета содержит все необходимые данные для вычисления размеров корпуса. Нужно заметить, что все размеры внутренние, добавляйте тощину материалов.

Данные можно вводить только в ячейки подсвеченные белым цветом и только в миллиметрах, остальные ячейки информационные и защищены от редактирования.

Рис. 1. Интерфейс программы расчтеа корпуса TQWP

В принципе все просто, но данные, по которым могут возникнуть вопросы постараюсь объяснить.

Толщина материала внутренней перегородки: желательно брать плотный материал не подверженный резонансу (ДСП, фанера, лучше бакелитовая), толщиной не менее 20 мм, так, как перегородка является элементом крепления боковых панелей.

Внешний диаметр корзины динамика: внешние габариты динамика.

Диаметр эффективной части диффузора: желательно брать данные, предоставленные производителем, но можно и измерить самим, нужно измерить расстояние между центрами подвеса диффузора, что тоже близко к истине.

Диаметр посадочного отверстия: пригодится при расчете деталей корпуса.

Собственная резонансная частота динамика: необходима для автоматического расчета частоты настройки корпуса TQWP.

Глубина закрытой части рупора: глубина площадки закрытого конца рупора (конуса). Категорически не рекомендуется делать больше 25–50 мм. Изменяя этот параметр можно в небольших пределах менять положение динамика по вертикали на передней панели.

Эффективная площадь диффузора: вычисляется автоматически.

Площадь открытой части рупора: равна 2,5-ой эффективным площадям диффузора. Вычисляется автоматически.

Площадь закрытой части рупора: вычисляется автоматически.

Позиция динамика: расстояние от закрытого конца рупора до центра посадочного отверстия динамика. Вычисляется автоматически.

Ширина корпуса: по умолчанию за ширину корпуса принимается внешний диаметр корзины головки. При желании изменить ширину корпуса, нужно подставить значение, на которое увеличится ширина с каждой стороны.

Глубина корпуса: внутренняя глубина корпуса. Вычисляется автоматически.

Высота корпуса: внутренняя высота корпуса. Вычисляется автоматически.

Глубина открытой части рупора: вычисляется автоматически.

Длина перегородки: вычисляется автоматически.

Высота порта: вычисляется автоматически.

Площадь порта: равна эффективной площади диффузора.

Внутренний объем корпуса: вычисляется автоматически.

Длина свернутого рупора: равна 1/4 длины волны, частоты настройки корпуса. Вычисляется автоматически.

Внешний диаметр ВЧ головки: если не предполагается использование ВЧ головки этот параметр можно упустить.

Диаметр посадочного отверстия ВЧ головки: Если не предполагается использование ВЧ головки этот параметр можно упустить.

Формулы применяемые при расчете TQWP

Рис. 2. Формулы применяемые при расчете TQWP

В таблице расчета TQWP сознательно допущена неточность по сравнению с оригинальным файлом. Вопрос в том, что считать открытым концом рупора, днище корпуса или расстояние от верхней части порта до задней стенки?

По моему убеждению, порт не является частью резонатора. Хотя это мое, личное мнение. Я могу и ошибаться. Согласно расчетам David B. Weems фактическая длина рупора может быть на 20% больше расчетной, так что, даже если я ошибаюсь, погрешность все равно в пределах допустимой нормы.

Лист «Корпус TQWP»

Здесь автор предлагает наиболее простой вариант чертежа TQWP. В конструкции предусмотрена возможность установки ВЧ головки. Так как размеры корпуса достаточно внушительные, желательно применять материал не менее 20–25 мм толщиной.

Передняя панель состоит из двух элементов: основной панели, на которую крепится широкополосный динамик и декоративной панели, которая приклеивается и притягивается саморезами к основной панели. Широкополосный динамик устанавливается в корпус снаружи, впотаи, ВЧ внахлест.

Дабы придать большую жесткость, нижняя панель тоже выполнена в виде бутерброда. Для придания респектабельного вида, предлагается два гриля, верхний прикрывающий динамики и нижний, закрывающий отверстие порта.

Рис. 3. Лист «Корпус TQWP»

Краткое описание вводимых данных.

Передняя панель: толщина материала основной передней панели.

Передняя декоративная панель: толщина материала декоративной передней панели.

Задняя панель: толщина материала задней панели.

Боковая панель: толщина материала боковых панелей.

Перегородка 1: толщина материала внутренней перегородки 1. Во избежание резонанса, желательно использовать материал, как можно толще. Перегородка также является элементом крепления боковых панелей и ребром жесткости.

Перегородка 2: толщина материала днища закрытого конца рупора.

Верхняя панель: толщина материала верхней панели.

Нижняя панель 1: толщина материала нижней фальшь панели. Желательно использовать материал, как можно толще, так, как панель является элементом крепления боковых и задней панелей.

Нижняя панель 2: толщина материала нижней панели.

Гриль верхний: толщина материала декоративной накладки на динамик.

Гриль нижний: Толщина материала декоративной панели прикрывающей отверстие порта. Ровна толщине декоративной передней панели.

Высота терминала: Если предполагается использование прямоугольного терминала. Если терминал другой формы или отсутствует, оставляйте ячейку пустой.

Ширина терминала: Если предполагается использование прямоугольного терминала. Если терминал другой формы или отсутствует, оставляйте ячейку пустой.

Диаметр терминала: Если предполагается использование круглого терминала. Если терминал другой формы или отсутствует, оставляйте ячейку пустой.

Расстояние между корпусами динамиков: Расстояние между корпусами динамиков. При использовании ВЧ динамика.

Нижний обвод верхнего гриля: Расстояние между отверстием под динамик и нижней кромкой гриля.

Площадка крепления нижнего гриля: Площадка на основной передней панели не прикрытая декоративной передней панелью, предназначенная для элементов крепления нижнего гриля.

Скос на передней декоративной панели: Параметр не обязательный.

Толщина ткани для гриля: Необходимо для корректного расчета нижнего гриля.

Эскизы чертежей TQWP

После того, как введены все обязательные параметры материалов, необходимых для построения корпуса, можно распечатать эскизы чертежей, нажатием кнопки «Распечатать эскизы». На печать будут выведены 8 листов формата А4 с указанием размеров. К сожалению эскизы не маштабированы.

Необходимо отметить, что эскиз гриля будет распечатан в 2-х вариантах, для одного динамика и для двух ( включая ВЧ ). Выбирайте какой больше нравится.

Рис. 4. Эскизы чертежей TQWP

Лист «Примеры демпфирования трубы Войта»

Показано влияние на АЧХ размещения демпфирующего материала в корпусе.

Рис. 5. Примеры демпфирования трубы ВойтаРис. 6. Лист «Рекомендации по демпфированию колонок TQWP»Рис. 7. Лист «Расчёт длины волны свернутого рупора»

Если кто-то воспользовался этой программой для расчета и изготовления АС, не сочтите за труд, написать пару слов Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript о своих впечатлениях, замечаниях и предложениях. Автор будет благодарен, за небольшой репортаж о проведенных вами работах.

Скачать программу тут или тут.

Читайте также

 

Полочная акустика своими руками / Хабр

Однажды я задумал собрать себе качественную акустику для озвучивания небольшой комнаты, а также для использования в качестве мониторов ближнего поля при работе со звуком на компе (хобби). Главное требование — адекватное звучание по отношению к источнику. Не чтобы «низы колбасило» или «тарелочки звенели», а именно адекватное естественное звучание. Итак, собираем качественные «полочники».
Количество полос

В теории идеальная система – однополосная. Но, как и все идеальное, такой системы не существует в природе. Да, есть очень качественные широкополосные динамики у того же «Визатона», но почему-то все известные производители делают двухполосные полочные системы. А когда речь идет о напольном варианте, то и 3 полосы — не редкость. Тут вопрос особо не стоял – классический двухполосный вариант: НЧ и ВЧ.

Выбор динамиков

Основное требование, предъявляемое к динамикам – оптимальное соотношение цена / качество. Т.е. это не должны быть «дешевки» по 500р., но и не умопомрачительный «хай-енд» за $1000. К тому же я не торопился. Мысль собрать собственными руками «полочники» пришла достаточно давно, и я заблаговременно закинул удочку моему хорошему знакомому, «больному» звуком, с которым мы на эту тему давно постоянно и плодотворно общаемся.

Первыми появились ВЧ — Vifa XT19SD-00/04 ring-rad. Это высококачественные 4-омные «пищали», достаточно популярные среди аудиофилов. Планировались для одного комплекта, но по каким-то причинам не пошли и в оказались в моем комплекте.

Вторыми подоспели НЧ. Ими оказались очень приличные мидбасы из комплекта Soundstream Exact 5.3. Вот здесь про них можно немного почитать. Случилось так, что «пищалки» при монтаже сгорели, а одинокие вуферы оказались сами по себе не нужны. 4-омные 5,5" мидбасы, закрепленные в литой корзине из алюминия, были незамедлительно приобретены.

Теперь, когда динамики есть, можно приступить к созданию акустики.

Активные / пассивные?

У каждого варианта свои плюсы и минусы. Во-первых, нужно учитывать компактность самих колонок и связанные с этим сложности в компоновке в условиях ограниченного пространства. А монтировать снаружи нет смысла. Во-вторых, отдельные модули как самостоятельные компоненты можно комбинировать в дальнейшем, а также проще ремонтировать в случае чего. Ну и в-третьих, активные колонки – это достаточно дорого. Т.к. если делать приличный усилитель (а бывает и по одному в каждый корпус), то он получится дороже самой акустики. К тому же у меня уже был усилитель. Но в любом случая я за схему – пассивная акустика + усилитель, она более универсальна.

Расчет размеров корпуса

С динамиками определились, теперь необходимо понять, какой корпус для них оптимален. Размеры считаются исходя из характеристик звучания НЧ-динамика. На сайте производителя рекомендации отсутствуют, т.к. динамик предназначался прежде всего для автозвука. Держать специальную аппаратуру для этих целей нет никакого смысла, если только это не ваша работа. Поэтому на помощь приходит толковый чувак со специальным стендом. В результате лабораторных испытаний получаем расчетный размер корпуса 310 х 210 х 270 мм. В процессе замеров также были посчитаны параметры фазоинвертора.

Кстати, многие производители на своих сайтах публикуют рекомендуемые размеры корпуса для динамиков. Когда такая информация есть, логично воспользоваться ей, но в данном случае такими данными я не располагал, поэтому пришлось заняться лабораторными исследованиями.

Материал корпуса

На мой взгляд, наиболее оптимальным материалом для корпуса является МДФ. Он акустически нейтрален, а также чуть лучше по эксплуатационным характеристикам, чем ДСП. Фанера также хороша, но найти качественную фанеру непросто, и она дороже и сложнее в обработке. В качестве исходного материала для корпуса был выбран 22мм лист МДФ. В принципе стандартных 18-20мм вполне достаточно, но я решил сделать немного с запасом. Жесткость лишней не бывает.

Конструкция и дизайн корпуса

Один из самых важных этапов. Прежде чем ехать за МДФ, советую определиться с конструкцией, чтобы сразу попросить продавца распилить лист по частям, а на нормальной точке продаж всегда есть хорошие станки с точным и ровным распилом. В домашних условиях такой рез получить сложно.

Итак, дизайн. Колонки должны смотреться как минимум не хуже «промышленных», чтобы не было ощущения клуба очумелых ручек. Мы ведь делаем не только качественную, но и красивую акустику. Вообще красивых, интересных и при этом конструктивно несложных акустических систем практически нет. Красивую акустику делает итальянская Sonus Faber, потрясающие по красоте – Magico Mini. Но все они сделаны с применением точных станков, которых дома по определению нет. Как вариант, можно заказать корпуса хорошему «краснодеревщику» с руками и ЧПУ. Такая работа обойдется в зависимости от того, где и что вы заказываете, от 10 000р. до 30 000р. вместе с материалами. Если специалист хороший, то колонки будут выглядеть не хуже, а то и лучше «магазинных». В данном случае я решил, что все полностью буду делать сам. Поэтому смотрим на вещи реально и делаем конструкцию безо всяких скосов, фигурных выпиливаний и т.д. Т.е. это будет параллелепипед. Расчетные размеры дают достаточно приятную пропорцию, а пропорция в дизайне – это уже полдела.

В чем проектировать? Я хоть и связан с дизайном по роду деятельности, но 3D-пакеты знаю, мягко говоря, поверхностно. При этом программа должна быть в большей степени инженерной, чем рендерной. Специализированные «Кады» для этой цели тяжеловаты и излишни. Выход был достаточно быстро найден – фриварный SketchUp более чем подходит для этой цели. Он настолько прост и интуитивно понятен, что был полностью освоен примерно за час. Он может главное: быстро создавать любые фигуры, проставлять размеры, использовать простые текстуры. Считаю, что такая программа идеально подходит для «домашних» целей. В ней легко можно, например, спроектировать кухню или даже небольшой дом.

Вот конструкция корпуса:

Конструкция простая. Шесть стенок, склеиваемые друг с другом. Спереди 2 выреза под динамики. Сзади 2 выреза: под фазоинвертор и под клеммник. Прямоугольником 120х80 обозначено место под кроссовер. Внутри фазоинвертор представляет собой еще одну стенку в ширину внутреннего пространства, прикрепленную перпендикулярно под вырезом:

Исходя из чертежа, вырисовывается схема распила листа:

Как будем отделывать корпус? Обклейка пленкой сразу исключилась – акустика должна выглядеть прилично. Как вариант рассматривалась покраска. Отказался от этой идеи, т.к. такие колонки впишутся далеко не в каждый интерьер (по крайней мере в текущий не вписывались). Хочется большей универсальности. В этом плане натуральный шпон больше подходит. Но полностью обклеенная шпоном акустика смотрится скучновато. Поиск комбинированного решения:

В целом варианты — неплохие по внешнему виду, но чисто конструктивно вызывают сложности. В результате было решено боковые стенки отделать шпоном ясеня, а остальные 4 стенки обтянуть по окружности кожей, точнее качественным автомобильным кожзамом. Пищаль красива сама по себе, а вот НЧ-динамик имеет на фронтальной стороне корпуса конструктивную накладку, которая будет смотреться не очень красиво. Поэтому было решено изготовить для него дополнительную декоративную накладку (кольцо), которое будет прижимать его к корпусу, а заодно придаст красоты самой колонке. С конструкцией и дизайном определились.

Инструменты

Прежде чем перейти к следующему этапу, обозначу, какие основные инструменты нужны для работы:
— Циркулярка.
— Электролобзик.
— Дрель.
— Фрезер.
— Шлиф-машина.
— Прямые руки.
Без этого набора лучше заказать корпуса хорошему мастеру.

Распил

Итак, распиливаем бюджет лист МДФ. Я уже писал, что лучше распиливать на специальных станках – это недорого, а получается точно. Но т.к. я решил корпус делать сам от и до, то для чистоты эксперимента распиливал сам ручной циркуляркой, а небольшие куски лобзиком с направляющей. Как и предполагалось идеального реза не получилось. После реза, пары стенок (левая-правая, передняя-задняя и т.д.) устанавливаются парой, подгоняются шлиф-машиной и/или электрорубанком и проверяются на перпендикулярность угольником. А в дальнейшем при сборке финально подгоняются после склейки. Потеря 2-3 мм несущественна. Но все-таки рекомендую распиливать сразу «на базе», сэкономите кучу времени.

Сборка корпуса

Стенки склеиваются ПВА и стягиваются шурупами. Вначале склеиваем корпус без передней стенки.

Далее пилим лобзиком отверстие фазоинвертора.

Теперь отверстие для клемника, а также фаску для того, чтобы его «утопить». Изначально по проекту клемник предполагалось разместить внизу. Но в процессе стало понятно, что монтировать кроссовер в центре через отверстие для вуфера будет не очень удобно, поэтому переместил дырку под клемник выше, а место под кроссовер – ниже.

Перед тем, как «приделать крышку», необходимо обклеить внутренности виброизоляционным материалом.

Можно закрывать коробку.

Теперь один из очень ответственных этапов – вырез отверстий под динамики на фронтальной панели. Я уже говорил, что идеальная акустическая система – это однополосная. Почему? Потому что распространение звука идет из одного источника до слушателя без рассогласования по времени из-за разницы (мизерной) в расстоянии, которая есть при использовании многополосной системы. Поэтому динамики лучше всего располагать как можно ближе друг к другу. Так звуковая картинка получается «плотнее». Рассчитываем отверстия так, что расстояние между краями динамиков будет примерно 1 см. Отверстия пилятся лобзиком с круговой направляющей.

Динамики должны быть утоплены. Прикладываем динамики и по их краю очерчиваем диаметр для снятия фаски. Глубину фаски мерим по накладке каждого динамика. Фаска снималась ручным фрезером. Глубина реза выставлялась по упору. Направляющие никакие не использовались, аккуратно вкруговую снимался слой за слоем до линии. Для «пищали» дополнительно выпилено два «уха» под клеммы.

После того, как фаски сняты, прикладываем клеммник и динамики, после чего просверливаем тоненьким сверлышком отверстия под будущие саморезы. Без них, во-первых, может «распереть» сам МДФ при вкручивании шурупов, во-вторых, при финальном монтаже динамики сложнее будет ровно поставить. Очень долго думал, каким образом выставлять относительно друг друга динамики, пришел к такой схеме:

Дырки от шурупов на внешних поверхностях необходимо заделать перед финальной отделкой. Я использовал эпоксидку. Чтобы не ждать, пока одна поверхность затвердеет, заклеивал каждую поверхность скотчем и принимался за следующую. Когда эпоксидка высохла, прошелся шлиф-машиной.

Отделка

Шпон остался с каких-то древних времен, поэтому покупать не пришлось. Листы были не широкие, поэтому подбиралась пара листов, скреплялась скотчем и клеилась к корпусу. Вначале одна сторона, потом другая.

Шпон нужно защитить. Я покрыл его прозрачным яхтным лаком.

Теперь нужно обтянуть корпус кожзамом. Вариантов как это сделать – много. Я решил сделать следующим образом. Отрезается полоса на 20 мм больше ширины корпуса и немного длиннее окружности корпуса. С каждой стороны подгибается на 10 мм, подгиб приклеивается на «спецклей 88». Потом на этот же клей полоса клеится по окружности на корпус. Сначала низ (частично), потом задняя стенка, потом верхняя, потом передняя и снова нижняя. На последнем этапе перед клейкой полоса подрезается по месту и наклеивается встык. Я клеил все стороны за раз, т.е. не ждал, пока каждая сторона высохнет. После каждой стороны я делал небольшую паузу (клей прихватывает достаточно быстро), и принимался за следующую.

После того, как все просохло, осторожно разрезается и заклеивается внутрь кожа на отверстии фазоинвертора.

Если очень хочется, потом фазик можно как-то облагородить.

Потом прорезаются отверстия на клеммнике, «вуфере» и «пищалке». Кожа на клеммнике и ВЧ будет утапливаться вниз, поэтому диаметр выреза можно оставить меньше на 5-10 мм. Кожа на НЧ будет прижиматься декоративным кольцом, поэтому нужно подрезать так, чтобы ее не было видно.

Финальный монтаж

Первым делом монтируем кроссовер. Кросс – самопальный, на хорошей элементной базе. Используются катушки с воздушным сердечником, пленочные конденсаторы на пищалку и МОХ-резисторы. Сам я его не паял, а заказал толковым ребятам.

Кстати, многие производители грешат тем, что в даже достаточно недешевую акустику порой ставят не очень хорошие кроссы. В интернете можно на эту тему найти много «распотрошенных» систем. Перед тем как монтировать кросс, нужно припаять три пары проводочков: для клеммника, НЧ и ВЧ. Получалось, что монтировать придется прямо на пластину с виброизоляцией. Посчитал, что она лишняя и демонтировал ее. Теперь можно прикручивать. В качестве подложки использовал кусок упаковочной пленки из-под какого-то девайса.

Теперь припаиваем нужную пару проводочков к клеммнику и фиксируем его на корпусе. Клеммник и динамики прикручиваются декоративными черными саморезами с головкой под «звездочку». Подобными саморезами прикручена накладка на «пищали», поэтому логично было бы использовать такие же и для остального. Задняя стенка готова.

Перед тем, как монтировать динамики, необходимо задемпфировать корпус специальным синтепоном. Для этих целей была использована «вата» фирмы Visaton. Синтепон клеится по окружности по стенкам.

С какого динамика начинать в принципе без разницы. Я начал с пищали. Припаиваем соответствующую пару проводочков от кросса, вставляем динамик и прикручиваем шурупами. Готово.

Мидбасс необходимо как бы подсунуть под кожу, а сверху придавить декоративным кольцом. Припаиваем оставшуюся пару проводочков и монтируем динамик.

Все? Все. Прикручиваем к клеммнику акустический кабель и начинаем испытания.

Испытания

Тест системы производился в следующих конфигурациях:

1. Ресивер Sherwood VR-758R + акустика.

2. Компьютер + Unicorn (USB-ЦАП) + Самопальный стерео-усилитель + акустика.

3. Компьютер + E-mu 0204 (USB-ЦАП) + Sherwood VR-758R + акустика.

Немного о самих конфигурациях. Я лично считаю, что на данный момент идеальный вариант домашнего муз-центра это: комп + USB-ЦАП + усилитель + акустика. Звук в цифре без искажений снимается через USB и поступает на качественный ЦАП, с которого передается на качественный усилитель и после на акустику. В такой цепочке количество искажений минимально. Кроме того, вы можете использовать совершенно разные фонограммы: 44000/16, 48000/24, 96000/24 и т.д. Все ограничено возможностями драйвера и ЦАПа. Ресиверы в этом плане менее гибкий и заранее морально устаревший вариант. Размер современных винчестеров позволяет хранить на них практически всю медиатеку. А тенденции к подписке на Интернет-контент могут и этот вариант упразднить, хотя это не ближайшее время и далеко не для всех подойдет.

Скажу сразу, что во всех трех конфигурациях акустика звучала прекрасно. Я, честно говоря, даже не ожидал. Вот некоторые субъективные аспекты.

1. Адекватный и естественный звук. Что записано, то и воспроизводится. Нет перекосов ни в какую сторону. Как я и хотел.

2. Большая чувствительность к исходному материалу. Все огрехи звукозаписи, если они есть, хорошо слышно. Качественно смикшированные треки слушаются отлично.

3. Хорошо читаемые для таких размеров басы. Конечно, органную музыку на полочниках в полной мере не оценишь (ее вообще на акустике сложно оценить), но большинство материала «переваривает» без проблем. Большего от таких малышек ожидать трудно.

4. Очень хорошая проработка деталей. Слышно каждый инструмент. Даже при насыщенной звуковой картинке и приличной громкости звук не съезжает в кашу (усилитель здесь играет не последнюю роль).

5. Хочется сделать погромче ;) Т.е. акустика не орет, а ровно играет. Хотя тут тоже не малая заслуга самого усилителя, т.к. при увеличении нагрузки хороший усилитель сохраняет линейность.

6. От долгого прослушивания не болит голова. У меня лично это частенько случается, а тут целый день играет и хоть бы что.

7. Опасения на счет некорректной панорамы и сильной зависимости звучания от положения слушателя не подтвердились. Насколько мне известно, у автомобильной акустики специфическая фазировка звука из-за особенностей расположения динамиков в салоне. А именно про этот комплект я читал, что мидбасы у него в этом плане более универсальные. Что собственно и подтвердилось. Можно сидеть в центре перед колонками, можно встать рядом боком к ним — звук отличный. Зависимость есть, но очень небольшая.

Что касается самих конфигураций, то наиболее качественного звука удалось добиться при второй конфигурации.

Во-первых, использовался очень качественный ЦАП Unicorn. Здесь можно про него почитать.

Во-вторых, «самопальный усилитель» — это ноу-хау одного толкового тольяттинского «звукаря». Вот он в красивом небольшом алюминиевом корпусе:

А вот «распотрошенный»:

В двух словах, удалось найти схемотехническое решение, при котором усилитель при изменении громкости сохраняет свои характеристики, т.е. не искажает звучание при любой (конструктивно допустимой) громкости. Очень многие усилители (даже очень дорогие) страдают этим. Было удивительно слушать, как такой усилитель оживлял многие акустические системы, т.е. заставлял их звучать так они должны звучать. К слову по такой схеме переделывались и некоторые промышленные усилители (в частности довольно неплохой и сам по себе Xindak), и у них открывалось «второе дыхание».

Сравнивали акустику с чем-то другим, спросите вы? Да, например с ProAC Studio 110 – это достаточно качественная полочная акустика, вот немного про них. Сравнили, поняли, что звучат точно не хуже. У «проаков» возможно чуть меньшая зависимость звука от положения слушателя из-за специфического размещения инвертора и «пищалки», там как-то они хитро все это рассчитывали. А в остальном абсолютно ничуть не хуже, даже мне лично мои самоделки больше понравились, но это спишем на субъективизм ;) Еще одевал наушники (достаточно неплохие Koss) и сравнивал по панораме, верхам и низам. Абсолютно идентичное звучание. Даже по низам. В общем, восторг полный.

Калькуляция по материалам

СЧ/НЧ динамики (пара): 3 000р.
ВЧ динамики (пара): 3 000р.
Кроссовер (пара): 3 000р.
Синтепон: 160р.
Терминал (клеммник): 700р.
Шурупы: 80р.
Лист МДФ, 22мм: 2 750р.
Скотч: 30р.
ПВА: 120р.
Спецклей 88: 120р.
Виброизоляция: 200р.
Фигурное кольцо-накладка: 500р.
Кабель:500р.
Итого: 14 160р.

Некоторые материалы были или достались безвоздмездно, здесь соответственно не учтены.

В заключении

В любом более-менее сложном устройстве или законченной функциональной системе важно абсолютно все. Когда речь идет о музыкальной системе, то на конечный результат влияет большое количество факторов:

— Качество фонограммы.
— Устройство для воспроизведения фонограммы.
— Цифро-аналоговый преобразователь.
— Усилитель сигнала.
— Провода.
— Динамики, установленные в корпусе акустической системы.
— Правильно рассчитанные под динамики и качественно собранные корпуса.
— Схема и комплектуха для кроссовера.

Это основной, но не полный список.

Неверно считать, что главное — усилитель или главное — провода, или главное — динамики. Домашняя музыкальная система — это как оркестр. И если в этом оркестре кто-то будет плохо, а кто-то блестящее играть, то в целом получится — средне. Или, как говорилось в очень точном примере: если смешать бочку говна с бочкой повидла, то получится две бочки говна.

Есть и другая крайность. Хорошая система стоит баснословных денег. Значит каждый компонент должен стоить по полмиллиона. А фонограммы должны быть исключительно в Super Audio CD или на фирменных пластинках. Типа закрытое общество элитных аудиофилов. Фигня это все.

Я пришел к выводу, что собрать собственную относительно бюджетную систему, которая описывается одним словом «Звучит», вполне возможно. И если в качестве ЦАП или усилителя в силу особенностей лучше использовать реально существующие решения, которых сейчас очень много. То правильно сделанная (самостоятельно или под заказ) акустическая система, будет звучать лучше, чем за те же деньги приобретенная «фирменная». Сейчас практически все компоненты можно заказать в Интернете. Более того многие производители публикуют схемы корпусов для соответствующих динамиков. Существует масса программного обеспечения для расчета параметров корпусов. В сети множество специализированных форумов, а в офлайне есть люди с руками. Во всем быть специалистом конечно невозможно. Как и в любой области главное – знать общие принципы.

Статья не претендует на истину в последней инстанции, но, надеюсь, что мои мысли и мой опыт кому-нибудь еще пригодится.

Upd. В коментах многие спрашивают про усилитель. Если кому интересно, пишите в личку, я дам координаты.

Upd2. У разработчика усилителя появился свой сайт — pvd-audio.com )

как сделать короб для акустической системы своими руками? Чертежи и изготовление самодельной коробки для акустики

Звуковые качества акустических систем в большинстве случаев зависят не столько от заложенных производителем параметров, сколько от корпуса, в котором они размещены. Обусловлено это материалами, из которых он изготовлен.

Немного истории

До начала ХХ столетия звук прибора воспроизводился через рупор громкоговорителя.

В 20-е годы прошлого века, в связи с изобретением динамиков с бумажными диффузорами, появилась необходимость в объемных корпусах, в них можно было спрятать всю электронику, защитив ее от внешней среды и придав изделию эстетичный вид.

Вплоть до 50-х годов выпускались модели корпусов, задняя стенка которых отсутствовала. Это позволяло охлаждать ламповое оборудование того времени. Тогда же и было замечено, что корпус выполнял не только защитные и дизайнерские функции, – он влиял и на звучание прибора. Разные части динамика имели неодинаковые фазы излучения, поэтому присутствие стенок короба сказывалось на силе интерференции.

Отмечалось, что на звук влиял материал, из которого изготавливался корпус.

Начались поиски и исследования акустических свойств сырья, пригодного для создания коробов, способных вместить динамики и донести до публики хорошее звучание. Нередко в погоне за идеальным звуком производились короба по стоимости, превышающие содержащееся в них оборудование.

Сегодня производство корпусов на фабриках происходит с точным расчетом плотности, толщины и формы материала, учитываются его способности влиять на вибрации и звук.

Виды и характеристики материалов для корпуса

Корпуса для акустических систем производят из разных материалов: ДСП, МДФ, пластик, металл. Самые экстравагантные изделия получаются из стекла, самые загадочные – из камня. Материал для домашнего изготовления выбирают попроще, который легко поддается обработке, например ДСП. Расскажем подробнее, из чего еще можно их сделать.

ДСП

Древесно-стружечные плиты состоят из стружки и крупных щепок, спрессованных и соединенных клеевой основой. Нередко такой состав выделяет токсичные испарения при нагреве. Плиты боятся влаги и могут крошиться. Но в то же время ДСП относится к бюджетным материалам, его легко обрабатывать.

Такие корпуса отлично справляются с вибрациями, хотя звук свободно проходит через них.

Небольшие варианты производят из ДСП толщиной в 16 мм, крупным изделиям понадобится материал толщиной в 19 мм. Для придания эстетичного вида ДСП ламинируют, покрывают шпоном или пластиком.

Фанера

Этот материал производят из тонкого (1 мм) спрессованного шпона. Он может обладать разными категориями в зависимости от производной древесины. Для коробов подходит изделие в 10–14 слоев. Со временем конструкции из фанеры, особенно при влажном состоянии воздуха, могут деформироваться. Но этот материал отлично гасит вибрации и удерживает звук внутри системы, поэтому его применяют для создания корпусов.

Столярная плита

Столярную плиту производят из двухстороннего шпона или фанеры. Внутрь между двумя поверхностями кладут наполнитель из брусков, реек и прочего материала. Весит плита немного, хорошо поддается обработке. Благодаря этим качествам ее используют для изготовления коробов.

ОСП

Ориентированно-стружечная плита представляет собой многослойный материал, состоящий из переработанных древесных отходов. Это прочное, упругое изделие, легко поддается обработке. Текстура ОСП очень красивая, но неровная. Для изготовления корпусов ее отшлифовывают и покрывают лаком. Плита хорошо поглощает звук и устойчива к вибрациям. К недостаткам относят испарение формальдегидов и резкий запах.

МДФ

Древесно-волокнистая плита состоит из мелких стружечных фракций, ее состав безвреден. Изделие выглядит прочнее, надежнее и дороже, чем ДСП. Материал хорошо резонирует, и именно его чаще всего используют для изготовления заводских корпусов. В зависимости от размеров акустической системы МДФ выбирают толщиной 10, 16 и 19 мм.

Камень

Этот материал хорошо поглощает вибрации. Из него нелегко изготовить корпус – нужны специальные инструменты и профессиональное мастерство. Для изделий применяют сланец, мрамор, гранит и другие виды поделочного камня. Корпуса получаются удивительно красивыми, но тяжелыми, из-за повышенной нагрузки им лучше находиться на полу. Качество звука в данном случае фактически идеально, но и стоимость подобного изделия слишком высока.

Стекло

Для создания корпусов используют оргстекло. В дизайнерском отношении изделия имеют невероятно красивый внешний вид, но для акустических возможностей это не лучший материал. Несмотря на то что стекло вступает в резонанс со звуком, цены на подобные изделия довольно высоки.

Дерево

Дерево считается ценным материалом для изготовления корпусов акустических систем, так как оно наделено хорошими поглощающими характеристиками. Но древесина имеет свойство рассыхаться со временем. Если это произойдет с корпусом, он станет непригодным к применению.

Металл

Для изготовления коробов используют легкие, но твердые сплавы алюминия. Корпус из подобного металла способствует хорошей передаче высокочастотных звуков и гасит резонанс. Чтобы снизить воздействие вибраций и повысить поглощаемость звука, короба для АС производят из материала, представляющего собой две алюминиевые пластины с проложенным между ними слоем вискоэластика. Если все же не удается добиться хорошего звукопоглощения, это сказывается на качестве звучания всей АС.

Типы конструкций

Прежде чем приступить к активной фазе изготовления корпуса своими руками для домашней акустической системы, рассмотрим, какие бывают типы конструкций.

Открытые системы

На щиток больших размеров монтируются динамики. Края щитка загибаются назад под прямым углом, а задняя стенка конструкции совсем отсутствует. В данном случае акустическая система имеет весьма условный короб. Подобная модель годится для больших помещений и плохо подходит для воспроизведения музыки с низкими частотами.

Закрытые системы

Привычные конструкции в виде коробов со встроенными динамиками. Имеют широкий диапазон звучания.

С фазоинвертором

Такие корпуса, кроме динамиков, наделены дополнительными отверстиями для прохождения звука (фазоинвертор). Это дает возможность воспроизведения самых глубоких басов. Но конструкция проигрывает закрытым коробам в четкости артикуляции.

С пассивным излучателем

В данной модели полую трубку заменили на мембрану, то есть установили дополнительный драйвер для низких частот, без магнита и катушки. Такая конструкция занимает меньше места внутри корпуса, а значит, и размер короба можно уменьшить. Пассивные излучатели помогают добиться чувствительной глубины баса.

Акустический лабиринт

Внутреннее содержание корпуса выглядит как лабиринт. Закрученные изгибы являются волноводами. Система имеет очень сложную настройку и стоит немалых средств. Но при правильном изготовлении происходит идеальная подача звука и высокая точность басов.

Как изготовить своими руками?

Чтобы правильно изготовить и собрать самодельный корпус для системы воспроизведения аудио, следует предварительно подготовить все необходимое:

  • материал, из которого предстоит сделать короб;
  • инструменты для выполнения работ;
  • провода;
  • динамики.

Сам процесс состоит из определенной последовательности шагов.

  1. Изначально определяется тип колонок, для которых изготавливаются короба: настольные, напольные и прочие.
  2. Затем составляются чертежи и схемы, выбирается форма коробки, рассчитывается размер.
  3. На фанерном листе производятся разметки 4 квадратов размерами 35х35 см.
  4. Внутри двух заготовок размечаются квадраты меньших размеров – 21х21 см.
  5. Выпиливается и убирается внутренняя часть. В образовавшийся проем примеряется колонка. Если вырез недостаточен для вхождения, его придется расширить.
  6. Далее подготавливаются боковые стенки.

Их параметры таковы:

    • глубина модели – 7 см;
    • длина одного комплекта стенок (4 штуки) – 35х35 см;
    • длина второго комплекта (4 штуки) – 32х32 см.

    7. Все заготовки тщательно зачищаются и доводятся до идентичных размеров.

    8. Стыки соединений сажаются на жидкие гвозди и закрепляются саморезами.

    9. В процессе изготовления конструкции внутреннюю часть обклеивают синтепоном или другим, поглощающим вибрацию материалом. Это необходимо для низкочастотных динамиков.

    Как поместить содержимое внутрь?

    В изготовленные короба встраивается по одному динамику. Если есть необходимость вместить два динамика, во избежание деформации конструкции от вибрационных нагрузок внутри корпуса устанавливают распорки между передней и задней стенками.

    Сам процесс встраивания несложен, если отверстие для динамика изготовлено по размеру.

    Провода следует разместить без перегибов, проследить, чтобы мелкие элементы системы не смещались во время вибрации. После установки внутреннего содержимого монтируется последняя панель, закрывающая короб.

    Если корпуса изготавливаются для монтажа в потолок или стену, понадобится звукоизоляционная подложка. Для установки изделия на пол или стол необходима специальная подставка.

    В заключение хочется добавить, что акустическое звучание зависит не только от технического содержимого и корпуса изделия, – оно составляет единое целое с помещением, в котором находится АС. Чистота и мощь звучания на 70% зависят от возможностей зала, его акустики. И еще: компактные короба занимают мало места, это приятно. Но габаритная конструкция, созданная под акустическую систему, всегда выигрывает в подаче звука.

    Из чего сделать корпус для акустики, смотрите в видео.

    Подготовка к экзамену IELTS - IELTS Listening 7

    x1 ~ .................... ~ x2 ~ .................... ~ x3 ~ .. ..................

    x4 ~ невозможно ~ x5 ~ ответить / ответить ~ x6 ~ ответить на телефонный звонок ~ x7 ~ уважение ~ x8 ~ электронная почта code ~ x9 ~ мозговой штурм ~ x10 ~ парировано

    x4 ~ .................... ~ x5 ~ .................... ~ x6 ~ .. .................. ~ x7 ~ .................... ~ x8 ~ ...... .............. ~ x9 ~ .................... ~ x10 ~ .......... ..........

    Вопросы 31-33

    Доброе утро, меня зовут доктор Мервин Форест, и я специализируюсь на методах управления. и обучение.Меня пригласили сюда сегодня, чтобы поговорить с вами о стоимости экономика плохого управления ... и сначала я хотел бы остановиться на область, которая в последнее время занималась всеми, и это принуждение в на рабочем месте, или, проще говоря, издевательства.

    Было подсчитано, что издевательства на работе обходятся британской экономике до четыре миллиарда фунтов стерлингов в год на потерю рабочего времени и судебные издержки. И с проблема очевидно нарастает, пора руководителям принять во внимание что происходит.Я хотел бы думать, что то, что воспринимается как издевательство это не что иное, как отсутствие опыта, незащищенность или незнание часть менеджеров, а не сознательное усилие напасть на кого-то, а то, что возможно, это случай ... моей наивности или чрезмерных надежд.

    Прежде чем мы разделимся на группы и рассмотрим первое задание из раздаточного материала, вы есть, я хотел бы начать с некоторых основных методов издевательства, которые были идентифицированы до сих пор.По сути, я собираюсь дать Вы примеры одного или двух пунктов. Вы все можете ясно прочитать OHP? Да? Правильно. Поехали.

    Вопросы 34-40

    Первый пункт в списке дает людям задачи, которые менеджеры сами не могут сделать и которые, следовательно, невозможно достичь. На самом деле это очень распространенная стратегия, используемая менеджерами для «управления» своими подчиненными. Это дает у некоторых людей ложное чувство безопасности, когда они наблюдают за неудачами других, они пытаются выполнить задачу! Это неплохой менеджмент; это просто глупо.Все поставленные цели и задачи должны быть легко достигнуты в реалистичные сроки.

    Отправка кому-либо записок с критикой выполнения задачи, в которой у человека нет возможности ответить - еще одна распространенная техника; особенно когда соответствующий руководитель не отвечает или делает невозможным работу подчиненных связаться с ним или с ней, не отвечая на телефонные звонки или не отвечая на электронные письма. Это не стиль звукового менеджера, а скорее выходки кого-то с эмоциональные проблемы.Если вы так себя ведете, не ждите, что ваш персонал будет уважать ты.

    А теперь технологический хулиган. Интересно, как все инструменты предназначены для помощь можно превратить в опасное оружие. Злоумышленник, использующий срочную электронную почту, работает быстро становится проблемой в офисе. Сотрудники включают свои компьютеры, чтобы увидеть с цепочкой плохо составленных электронных писем, что мгновенно и часто нереально требования, раскрывающие истерический способ управления. Вы когда-нибудь чувствовали чувство страха перед просмотром своей электронной почты, даже личных сообщений? Все компаниям следует разработать стратегию компании, предусматривающую наличие кода электронной почты практики, когда оскорбительные сообщения пересылаются назначенному лицу для соответствующих действий.

    Теперь я хочу, чтобы вы разбились на группы и обсудили другие методы запугивания. которые, как вы думаете, могли испытать, и, возможно, если честно, которые вы были участником. Я могу придумать еще как минимум девять стратегий запугивания. Я также хотел бы, чтобы вы обдумали, как, по вашему мнению, каждая из техник в вашем списке можно противопоставить.

    Всем понятно, в чем заключается задача? Да? Хорошо. У тебя есть двадцать минут сделать это.

    Напишите НЕ БОЛЕЕ ДВУХ СЛОВ для каждого ответа.

    Раздел 4:
    Вы услышите доклад преподавателя университета о запугивании на рабочем месте. группе студентов.
    Сначала у вас есть время посмотреть Вопросы 31-33 .

    Напишите НЕ БОЛЕЕ ДВУХ СЛОВ для каждого ответа.

    .

    Калькулятор процентов

    Укажите любые два значения ниже и нажмите кнопку «Рассчитать», чтобы получить третье значение.


    Калькулятор процентов общими фразами


    Калькулятор разницы в процентах


    Калькулятор процентного изменения

    Укажите любые два значения ниже и нажмите кнопку «Рассчитать», чтобы получить третье значение.

    В математике процент - это число или соотношение, представляющее долю от 100.Часто обозначается символом «%» или просто «процентом» или «процентом». Например, 35% эквивалентно десятичной дроби 0,35 или

    .

    Формула процента

    Хотя процентную формулу можно записать в разных формах, по сути, это алгебраическое уравнение, включающее три значения.

    P × V 1 = V 2

    P - процентное значение, V 1 - первое значение, которое будет изменяться процентным соотношением, а V 2 - результат процентного отношения, действующего на V 1 .Предоставленный калькулятор автоматически преобразует введенный процент в десятичную дробь для вычисления решения. Однако, если вычислить процентное значение, возвращаемое значение будет фактическим процентом, а не его десятичным представлением.

    EX: P × 30 = 1,5

    При решении вручную формула требует процента в десятичной форме, поэтому решение для P необходимо умножить на 100, чтобы преобразовать его в проценты. По сути, это то, что делает калькулятор выше, за исключением того, что он принимает значения в процентах, а не в десятичной форме.

    Формула разницы в процентах

    Процентная разница между двумя значениями рассчитывается путем деления абсолютного значения разницы между двумя числами на среднее значение этих двух чисел. Умножение результата на 100 даст решение в процентах, а не в десятичной форме. Обратитесь к уравнению ниже для пояснения.

    Разница в процентах = × 100

    Формула процентного изменения

    Увеличение и уменьшение в процентах рассчитываются путем вычисления разницы между двумя значениями и сравнения этой разницы с начальным значением.Математически это включает использование абсолютного значения разницы между двумя значениями и деление результата на начальное значение, по сути, вычисляя, насколько изменилось начальное значение.

    Калькулятор процентного увеличения выше вычисляет увеличение или уменьшение определенного процента входного числа. Это в основном включает преобразование процента в его десятичный эквивалент и либо вычитание (уменьшение), либо добавление (увеличение) десятичного эквивалента от и до 1, соответственно.Умножение исходного числа на это значение приведет к увеличению или уменьшению числа на заданный процент. Обратитесь к примеру ниже для пояснения.

    EX: 500 увеличено на 10% (0,1)
    500 × (1 + 0,1) = 550

    500 уменьшено на 10%
    500 × (1 - 0,1) = 450

    .

    SAAWR: Самодоступный ресурс по академическому письму

    В этой теме основное внимание уделяется тому, как сформулировать цель вашего исследования и вопросы исследования, когда вы продолжаете представлять свой собственный проект. Проверьте свое понимание темы, выполнив упражнения с самопроверкой на следующей вкладке.


    С указанием цели исследования

    После того, как пробел в исследованиях был выявлен, пора автору представить предлагаемое исследование. Обычно это делается путем изложения общей цели исследования или объяснения того, что делается для устранения пробелов в исследовании.

    Примеры:

    Вот несколько примеров « заявлений о целях », найденных в исследовательских статьях и предложениях:

    1. В этом исследовании мы предлагаем и проиллюстрируем структуру для высокочастотной оценки условий ведения бизнеса (Aruoba, Diebold, & Scotti, 2008) (Бизнес).
    2. Данное исследование преследует двоякую цель. Наша первая мотивация состоит в том, чтобы предложить новую аналитическую стратегию для явного учета эндогенности любой меры адаптации к климату.Наша вторая мотивация - оценить, в какой степени адаптация моделирования явно влияет на частичные эффекты климатических атрибутов (Chatzopoulos & Lippert, 2015) (Economics).
    3. Этот документ призван предложить новый взгляд на влияние зеленых технологий и инноваций на SCM ( ссылок ), чтобы достичь лучшего понимания стратегий и политики, разработанных для решения возникающих проблем в… (Cosimato & Troisi, 2015) (Экономика).

    На каком языке авторы объявляют о цели своего обучения?


    Вопросы исследования

    Как и в случае с большинством журнальных статей, за формулировкой цели часто следует формулировка так называемых исследовательских вопросов (RQ) - утверждений (1-5) в форме вопросов, которые позволяют автор, чтобы определить фокус исследования и зафиксировать конкретные (и новые!) моменты, требующие изучения.Формулирование RQ часто считается одним из ключевых начальных шагов исследовательского проекта, шагом, который будет направлять исследовательский процесс. Однако они могут корректироваться по мере развития проекта и появления новых, часто неожиданных результатов.

    Написание эффективных RQ может стать проблемой для начинающих исследователей. RQ должны быть узкими и достаточно конкретными, чтобы отвечать за них в текущих условиях. Если они слишком общие или сложные (например, «Как технологии влияют на модели голосования российских граждан?»), RQ могут дезориентировать автора относительно того, в чем фокус исследования, с чего начать исследование, какие методы и процедуры использовать, и как интерпретировать результаты.На такие вопросы, возможно, никогда не удастся найти ответы, поскольку будет довольно сложно провести соответствующее исследование без предварительного определения того, какая технология подразумевается, какой период времени задействован, о каком проценте российских избирателей мы думаем, как получить доступ к голосованию. данные и т. д.?

    Примеры:

    Выписка 1

    Целью данного исследования является изучение того, как использование конкретных текстовых переменных может способствовать различному восприятию говорящего на англоязычном CMC.Я также хочу изучить возможность того, что текстовые подсказки могут способствовать восприятию других личных характеристик, таких как раса, использование Интернета и уровень образования. С этой целью в данном исследовании будут рассмотрены следующие исследовательские вопросы:

    • Как испытуемые воспринимают возраст, пол и другие характеристики говорящих в соответствии со стандартными или нестандартными орфографическими особенностями?
    • Некоторые орфографические особенности более заметны, чем другие?
    • Имеет ли значение предполагаемый возраст или пол говорящего для восприятия субъектами вариаций текста? (LIN.G1.06.2, MICUSP) (Прикладная лингвистика)

    Выписка 2

    Мы также сочли полезным изучить, какая разница может зависеть от уровня владения писателем. Следовательно, вопросы нашего исследования были следующими: 1) Какие виды неуправляемой обратной связи на английском языке дают студенты тайваньских университетов в интерактивном режиме на английские сочинения неизвестных коллег с помощью ресурса Web 2.0? 2) Их отзывы различаются в зависимости от уровня владения письмом, демонстрируемого в композициях? (Chwo, 2015) (Прикладная лингвистика)

    Выписка 3

    В частности, исследование сосредоточено на следующих исследовательских вопросах: 1) Как студенты второго уровня участвуют в процессе совместного написания текста с помощью веб-инструментов обработки текста? 2) Какова природа группового участия в совместном письме через Интернет? (Кесслер и др., 2012) (Прикладная лингвистика).

    Если вы определили пробел в исследовании на данном этапе, как бы вы сформулировали цель своего исследования и начальные вопросы исследования?

    .

    Грамматический падеж в английском

    Мейв Мэддокс

    В древнеанглийском

    было пять падежей: именительный падеж , винительный падеж , родительный падеж , дательный падеж и инструментальный .

    В современном английском есть три падежа:

    1. Именительный падеж (также называемый субъективным)
    2. Винительный падеж (также называемый объективным)
    3.Родительный падеж (также называемый притяжательным)

    Объективный падеж включает старый дательный и инструментальный падеж.

    Случай касается отношения, которое одно слово имеет к другому в предложении, то есть когда одно слово «падает» по отношению к другому. Слово происходит от латинского слова, означающего «падение, падение». В других современных языках у прилагательных есть падеж, но в английском падеж применяется только к существительным и местоимениям.

    Именительный / субъективный падеж
    Когда существительное используется в качестве а) подлежащего глагола или б) дополнения глагола бытия, говорят, что оно находится в субъективном или именительном падеже.

    Король от души рассмеялся.
    Король - существительное в субъективном падеже, потому что оно является субъектом глагола смеялся .

    Король - сын Элеоноры Аквитанской.
    Сын - существительное в субъективном падеже, поскольку оно является дополнением глагола бытия - .

    Винительный / прилагательный падеж
    Когда существительное используется в качестве объекта глагола или объекта предлога, говорят, что оно находится в объективном или винительном падеже.

    Царь покорил своих врагов.
    Враги - существительное в объективном падеже, потому что оно получает действие переходного глагола подчиненный ; это прямой объект покоренный .

    Друзья пошли в кино.
    Movie - существительное в объективном падеже, потому что оно является объектом предлогов с по .

    Салли написала Чарли письмо.
    Чарли - существительное в объективном падеже, поскольку оно является косвенным объектом глагола , написанного .

    Переходный глагол всегда имеет прямое дополнение; иногда у него будет второй объект, называемый «косвенный объект». В старой терминологии косвенный объект находился в «дательном падеже». В настоящее время косвенный объект, как и прямой объект, употребляется в винительном или объективном падеже

    .

    Примечание: некоторые учителя английского языка все еще могут различать (как я когда-то) между винительным и дательным падежом, но в самом последнем учебнике английского для колледжа, который у меня есть (авторское право 2000), даже нет термина «дательный падеж» в указателе.Поскольку существительные и местоимения в дательном падеже пишутся так же, как и в объективном падеже, нет практических причин для сохранения прежнего обозначения.

    Родительный падеж / притяжательный падеж

    Из трех падежей существительных склоняется только притяжательный падеж (меняет способ написания).

    Существительные в притяжательном падеже склоняются путем добавления апострофа - с добавлением «s» или без него.

    Туфли мальчика развязаны.
    Boy’s - существительное единственного числа в притяжательном падеже.

    Туфли мальчиков развязаны.
    Мальчики - существительное множественного числа в притяжательном падеже.

    Этот падеж существительного с одним склонением является источником ошибок для очень многих носителей английского языка.

    английских местоимений также являются частым источником ошибок, потому что они сохраняют наклонные формы, чтобы показать субъективный и объективный падеж:

    Местоимения в субъективном падеже: I, he, she, we, they, who
    Местоимения в субъективном падеже: me, him, her, us, them, who

    Местоимения , и и имеют одинаковую форму как в субъективном, так и в объективном случае.

    Примечание: Строго говоря, мой и мой , а также другие притяжательные формы являются формами родительного падежа, но ученики, которых учили, что местоимения стоят вместо существительных, избавлены от ненужной путаницы, когда учитель оставляет за собой термин «притяжательное местоимение. »Для слов, которые на самом деле обозначают существительные, например , мое и , их . Как и прилагательные, мое , его , наше и т. Д. Стоят перед существительными, поэтому имеет смысл называть их притяжательными прилагательными.”

    Объективная форма , которой практически исчезли из современной речи; субъективная форма , которую взяла на себя в объективном случае для многих ораторов.

    Похожие сообщения:
    Переходные глаголы
    Принципы владения
    Остерегайтесь «кого»

    Хотите улучшить свой английский за пять минут в день? Получите подписку и начните получать наши ежедневные советы и упражнения по написанию!

    Продолжайте учиться! Просмотрите категорию «Грамматика 101», просмотрите наши популярные публикации или выберите соответствующую публикацию ниже:

    Хватит делать эти досадные ошибки! Подпишитесь на Daily Writing Tips сегодня!

    • Вы улучшите свой английский всего за 5 минут в день, гарантировано!
    • Подписчики получают доступ к нашим архивам с 800+ интерактивными упражнениями!
    • Вы также получите три бонусные электронные книги совершенно бесплатно!
    Попробовать бесплатно
    .

    Как вы рассчитываете свой средний балл? Пошаговая инструкция

    Как именно взять такой сложный документ, как расшифровка стенограммы, и сжать его до одного числа? Если вам интересно, как использовать итоговые оценки, полученные в средней школе, для определения вашего среднего балла, то вы попали в нужное место. Эта статья покажет вам, как произвести этот расчет, шаг за шагом. Но сначала, что такое средний балл?

    Что такое средний балл?

    Скорее всего, в ваших классах средней школы ваши итоговые оценки выставляются как букв (A-, B + и т. Д.) или процентов от (92%, 85% и т.д. из 100%).

    Средний академический балл или средний балл преобразует эти буквы или проценты в числа, а затем усредняет их вместе. Поскольку он складывается из всех ваших оценок, ваш средний балл является одним из наиболее важных факторов при поступлении в колледж. Это хороший показатель вашего интеллекта, трудовой этики, настойчивости и готовности подтолкнуть себя.

    GPA помогают колледжам легко сравнивать вас с другими студентами, окончившими вашу школу, и со всеми другими поступающими. Но почему?

    Представьте, что вы сотрудник приемной комиссии, который должен просмотреть тысячи заявлений в колледж. Вы бы предпочли просмотреть каждую расшифровку стенограммы индивидуально, сложить все «А» и все «четверки», а затем сравнить это со следующим человеком и так далее? Или вы бы предпочли иметь простой сводный номер, который можно было бы использовать для быстрого сравнения по всем направлениям?

    Ваш средний балл - это краткое сводное число.

    Превратите трудно съедобные ингредиенты в расшифровку стенограммы в липкую сладость среднего балла.Хотя, наверное, не с открытым пламенем.

    Разница между взвешенным и невзвешенным GPA

    Есть два основных типа GPA: взвешенные и невзвешенные.

    Невзвешенный средний балл - это когда школа использует шкалу от 0,0 до 4,0 и не , а учитывает уровень сложности классов.

    Напротив, взвешенный средний балл - это когда школа использует шкалу от 0,0 до 5.0 (или иногда 6.0) и не учитывает классовую сложность . В этой модели школа присваивает более высокие числовые значения оценкам, полученным в классах с отличием, AP и / или IB.

    Вот пример, который поможет прояснить различия. Скажем, Джереми получает пятерку на стандартном уровне истории США, а Лакшми получает пятерку по истории США. В модели с невзвешенным GPA оба As обрабатываются одинаково, каждый из которых преобразуется в 4,0 .

    Но в модели с взвешенным средним баллом оценка Джереми A будет преобразована в 4.0, а A Лакшми преобразует в 5.0, чтобы показать, что ее классу потребовалось гораздо больше усилий, чтобы получить ace .

    Видите разницу?

    Прежде чем мы продолжим, важно понять, что эта статья в основном посвящена

    .

    Тест хи-квадрат

    Холост: 47 Женат: 71 В разводе: 35
    Холост: 44 Женат: 85 В разводе: 40

    Группы и номера

    Вы исследуете две группы и разбиваете их на категории одиноких, женатых или разведенных:

    Цифры точно разные, но...

    • Это просто случайный шанс?
    • Или вы нашли что-то интересное?

    Тест хи-квадрат дает значение «p», чтобы помочь вам принять решение!

    Пример: «Какой праздник вы предпочитаете?»

    Пляж Круиз
    Мужчины 209 280
    Женщины 225 248

    Влияет ли пол на предпочитаемый отпуск?

    Если пол (мужчина или женщина) влияет на предпочтительный отпуск , мы говорим, что они иждивенцы .

    Выполнив некоторые специальные вычисления (объясненные позже), мы получили значение «p»:

    p значение 0,132

    Теперь p <0,05 является обычным тестом для зависимости .

    В этом случае p больше 0,05 , поэтому мы полагаем, что переменные независимы (т.е. не связаны друг с другом).

    Другими словами, мужчины и женщины, вероятно, предпочитают , а не , по-разному предпочитают пляжный отдых или круизы.

    Это были просто случайные различия, которых мы ожидали при сборе данных.

    Значение "p"

    «p» - вероятность того, что переменные являются независимыми .

    Представьте, что предыдущий пример на самом деле был двумя случайными выборками из мужчин, каждый раз:

    Мужчины:
    Пляж 209, Круиз 280
    Мужчины:
    Пляж 225, Круиз 248

    Неужели вероятно, вы будете получать такие разные результаты, опрашивая мужчин каждый раз?

    Ну, значение "p" 0.132 говорит, что это действительно могло происходить очень часто.

    Опросы в конце концов случайны. Мы ожидаем каждый раз немного разных результатов, верно?

    Итак, большинство людей хотят видеть значение p меньше 0,05 , прежде чем они будут рады сказать, что результаты показывают, что у групп другой ответ.

    Давайте посмотрим на другой пример:

    Пример: «Какое животное вы предпочитаете?»

    Кот Собака
    Мужчины 207 282
    Женщины 231 242

    Выполнив вычисления (показанные позже), мы получим:

    Значение P равно 0.043

    В данном случае p <0,05 , поэтому этот результат считается «значимым», что означает, что мы думаем, что переменные , а не независимы.

    Другими словами, поскольку 0,043 <0,05 мы думаем, что пол связан с предпочтениями домашних животных (мужчины и женщины имеют разные предпочтения в отношении кошек и собак).

    Просто ради интереса обратите внимание, что числа в наших двух примерах похожи, но результирующие p-значения сильно различаются: 0.132 и 0,043 . Это показывает, насколько чувствителен тест!

    Почему p <0,05?

    Это просто выбор! Использование p <0,05 является обычным явлением. , но мы могли бы выбрать p <0,01, чтобы быть еще более уверенными в том, что группы ведут себя по-разному или на любом значении на самом деле.

    Расчет P-значения

    Итак, как мы вычисляем это p-значение? Мы используем тест хи-квадрат!

    Тест хи-квадрат

    Примечание: Chi Звучит как «Привет», но с K , поэтому звучит как « Ki квадрат»

    И Chi - греческая буква Χ, поэтому мы также можем написать ее Χ 2

    Важные моменты, прежде чем мы начнем:

    • Этот тест работает только для категориальных данных (данные в категориях), таких как пол {мужчины, женщины} или цвет {красный, желтый, зеленый, синий} и т. Д., Но не числовые данные , такие как рост или вес.
    • Цифры должны быть достаточно большими. Каждая запись должна быть 5 или более. В нашем примере у нас есть такие значения, как 209, 282 и т. Д., Так что все готово.

    Наш первый шаг - сформулировать нашу гипотезу :

    Гипотеза : утверждение, которое может быть верным, которое затем можно проверить.

    Две гипотезы .

    • Пол и предпочтения кошек или собак независимые .
    • Пол и предпочтения кошек или собак не зависят от .

    Выложить данные в таблицу:

    Кот Собака
    Мужчины 207 282
    Женщины 231 242

    Сложите строки и столбцы:

    Кот Собака
    Мужчины 207 282 489
    Женщины 231 242 473
    438 524 962

    Вычислить «ожидаемую стоимость» для каждой записи:

    Умножьте сумму каждой строки на сумму каждого столбца и разделите на общую сумму:

    Кот Собака
    Мужчины 489 × 438 962 489 × 524 962 489
    Женщины 473 × 438 962 473 × 524 962 473
    438 524 962

    Что дает нам:

    Кот Собака
    Мужчины 222.64 266,36 489
    Женщины 215,36 257,64 473
    438 524 962

    Вычесть ожидаемое из наблюдаемого, возвести его в квадрат, затем разделить на ожидаемое:

    Другими словами, используйте формулу (O-E) 2 E где

    • O = Наблюдаемое (фактическое) значение
    • E = Ожидаемое значение
    Кот Собака
    Мужчины (207−222.64) 2 222,64 (282−266,36) 2 266,36 489
    Женщины (231–215,36) 2 215,36 (242−257,64) 2 257,64 473
    438 524 962

    Что дает нам:

    Кот Собака
    Мужчины 1.099 0,918 489
    Женщины 1,136 0,949 473
    438 524 962

    Теперь сложите рассчитанные значения:

    1,099 + 0,918 + 1,136 + 0,949 = 4,102

    Хи-квадрат 4,102

    От хи-квадрат до стр.

    степени свободы

    Сначала нам нужна «Степень свободы»

    Степень свободы = (строки - 1) × (столбцы - 1)

    В нашем примере у нас 2 строки и 2 столбца:

    DF = (2 - 1) (2 - 1) = 1 × 1 = 1

    p-значение

    Остальные вычисления сложны, поэтому либо посмотрите их в таблице, либо воспользуйтесь калькулятором хи-квадрат.

    Результат:

    р = 0,04283

    Готово!

    Формула хи-квадрат

    Это формула для хи-квадрат:

    Χ 2 = Σ (O - E) 2 E

    • Σ означает суммирование (см. Сигма-нотацию)
    • O = каждый Наблюдаемое (фактическое) значение
    • E = каждый Ожидаемое значение

    Итак, мы вычисляем (O-E) 2 E для каждой пары наблюдаемых и ожидаемых значений, а затем суммируем их.

    .

    Смотрите также