Расчет усеченного конуса развертка


Онлайн калькулятор: Развертка (выкройка) конуса

Калькулятор рассчитывает параметры развертки прямого кругового конуса на плоскости. Картинка ниже иллюстрирует задачу.

Про конус нам известен радиус основания и высота конуса (или высота усеченного конуса). Для описания развертки нам надо найти радиус внешней дуги, радиус внутренней дуги (если конус усеченный), длину образующей и центральный угол.

Длину образующей можно посчитать по теореме Пифагора:
,
при этом для полного конуса r1 просто обращается в ноль.

Радиус внутренней дуги можно найти из подобия треугольников:
,
опять же, для полного конуса она равна нулю.

Соответственно, радиус внешней дуги:
,
для полного конуса он совпадает с L.

Ну и центральный угол:

Развертка (выкройка) конуса

Радиус второго основания (для случая усеченного конуса)

Точность вычисления

Знаков после запятой: 2

Длина образующей L

 

Радиус внешней дуги выкройки R2

 

Радиус внутренней дуги выкройки R1

 

Центральный угол выкройки (в градусах)

 

Длина внешней дуги

 

Длина внутренней дуги

 

Длина хорды, соединяющей края внешней дуги

 

content_copy Ссылка save Сохранить extension Виджет

Развертка усеченного и прямого конуса

Расчёт развёртки конуса

Введите размеры в мм, и тип конуса:

Результат расчёта:

Скачать, сохранить результат

Выберите способ сохранения

Информация

Часто в строительной практике или даже повседневной жизни приходится сталкиваться с необходимостью построения конуса. Процесс построения требует определенных знаний и высокой точности, иначе конус будет иметь определенные отклонения от необходимых параметров и это может привести к тем или иным неприятным последствиям. Расчет развертки конуса является важнейшей частью при создании выкройки для конуса. Данный показатель относительный и при его расчете необходимо знать ряд других параметров. При этом, необходимо понимать, что существует два вида конусов. Первый вид называется «Прямой конус», то есть классическом его понимании. Второй вид называется «Усеченный конус» - часть конуса, которая заключается между основанием и секущей плоскостью, параллельной его основанию. Расчет развертки прямого конуса отличается от того, как производится расчет развертки усеченного конуса. Отличие заключается в том, что у усеченного конуса появляется еще одна переменная и по итогу расчета калькулятор сообщает в расчете не только расстояние и угол, но и два радиуса.

Наш онлайн калькулятор имеет встроенные формулы, что позволяет производить расчет данных показателей, просто выбрав вид конуса и введя абсолютные значения в соответствующие ячейки. Возможности и принцип построения системы калькулятора исключают допущение ошибок при расчетах, и избавляют пользователя от необходимости в самостоятельном детальном изучении методик расчета.

Преимущества, которые дает онлайн калькулятор

  • Большая экономия времени;
  • Гарантированно правильный и предельно точный расчет;
  • Удобный интерфейс, который будет понятен даже новичку;
  • Открытый доступ к калькулятору для всех пользователей.

Таким образом, можно сделать вывод, что расчет развертки конуса требует концентрации внимания на многих деталях, и самостоятельный его расчет является достаточно трудоемким. Наш онлайн калькулятор является инструментом, который упростит Вашу жизнь при точном расчете данного показателя. Также Вам доступна информация о том, какая формула применяется при расчете и определенная справочная информация.

поделиться и оценить

Калькуляторы расчета размеров развертки конуса

Иногда в ходе выполнения тех или иных хозяйственных работ мастер встаёт перед проблемой изготовления конуса – полного или усеченного. Это могут быть операции, скажем, с тонким листовым металлом, эластичным пластиком, обычной тканью или даже бумагой или картоном. А задачи встречаются самый разные – изготовление кожухов, переходников с одного диаметра на другой, козырьков или дефлекторов для дымохода или вентиляции, воронок для водостоков, самодельного абажура. А может быть даже просто маскарадного костюма для ребенка или поделок, заданных учителем труда на дом.

Калькуляторы расчета размеров развертки конусаКалькуляторы расчета размеров развертки конуса

Чтобы из плоского материала свернуть объёмную фигуру с заданными параметрами, необходимо вычертить развертку. А для этого требуется рассчитать математически и перенести графически необходимые точные размеры этой плоской фигуры. Как это делается – рассмотрим в настоящей публикации. Помогут нам в этом вопросе калькуляторы расчета размеров развертки конуса.

Калькуляторы расчета размеров развертки конуса

Несколько слов о рассчитываемых параметрах

Понять принцип расчета будет несложно, разобравшись со следующей схемой:

Усеченный конус с определяющими размерами и его развёртка. Показан усеченный конус, но с полным - принцип не меняется, а расчеты  и построение становятся даже проще.Усеченный конус с определяющими размерами и его развёртка. Показан усеченный конус, но с полным — принцип не меняется, а расчеты  и построение становятся даже проще.

Итак, сам конус определяется радиусами оснований (нижней и верхней окружности) R1 и R2, и высотой Н. Понятно, что если конус не усеченный, то R2 просто равно нулю.

Буквой L обозначена длина боковой стороны (образующей) конуса. Она в некоторых случаях уже известна – например, требуется сделать конус по образцу или выкроить материал для обтяжки уже имеющегося каркаса. Но если она неизвестна – не беда, ее несложно рассчитать.

Справа показана развёртка. Она для усеченного конуса ограничена сектором кольца, образованного двумя дугами, внешней и внутренней, с радиусами Rb и Rs. Для полного конуса Rs также будет равен нулю. Хорошо видно, что Rb = Rs + L

Угловую длину сектора определяет центральный угол f, который в любом случае предстоит рассчитать.

Все расчеты займут буквально минуту, если воспользоваться предлагаемыми калькуляторами:

Шаг 1 – определение длины образующей L

(Если она уже известна – шаг пропускается)

Перейти к расчётам

Шаг 2 – определение радиусов внутренней и внешней дуги развертки

Радиусы рассчитываются поочередно – с выбором в соответствующем поле калькулятора.

Шаг 3 – определение величины центрального угла f

Перейти к расчётам

*  *  *  *  *  *  *

Итак, все данные имеются. Остается на листе бумаги циркулем провести две дуги рассчитанных радиусов. А затем из точки центра с помощью транспортира прочертить два луча под рассчитанным углом – они ограничат развертку по угловой длине.

Существуют и чисто геометрические методы построения довольно точной развертки конуса, без проведения расчётов. Один из них подробно описан в статье нашего портала «Как сделать абажур своими руками».

прямой, наклонный и усеченный конус

Развертка поверхности конуса - это плоская фигура, полученная путем совмещения боковой поверхности и основания конуса с некоторой плоскостью.

Варианты построения развертки:

Развертка прямого кругового конуса

Развертка боковой поверхности прямого кругового конуса представляет собой круговой сектор, радиус которого равен длине образующей конической поверхности l, а центральный угол φ определяется по формуле φ=360*R/l, где R – радиус окружности основания конуса.

В ряде задач начертательной геометрии предпочтительным решением является аппроксимация (замена) конуса вписанной в него пирамидой и построение приближенной развертки, на которую удобно наносить линии, лежащие на конической поверхности.

Алгоритм построения

  1. Вписываем в коническую поверхность многоугольную пирамиду. Чем больше боковых граней у вписанной пирамиды, тем точнее соответствие между действительной и приближенной разверткой.
  2. Строим развертку боковой поверхности пирамиды способом треугольников. Точки, принадлежащие основанию конуса, соединяем плавной кривой.

Пример

На рисунке ниже в прямой круговой конус вписана правильная шестиугольная пирамида SABCDEF, и приближенная развертка его боковой поверхности состоит из шести равнобедренных треугольников – граней пирамиды.

Рассмотрим треугольник S0A0B0. Длины его сторон S0A0 и S0B0 равны образующей l конической поверхности. Величина A0B0 соответствует длине A’B’. Для построения треугольника S0A0B0 в произвольном месте чертежа откладываем отрезок S0A0=l, после чего из точек S0 и A0 проводим окружности радиусом S0B0=l и A0B0= A’B’ соответственно. Соединяем точку пересечения окружностей B0 с точками A0 и S0.

Грани S0B0C0, S0C0D0, S0D0E0, S0E0F0, S0F0A0 пирамиды SABCDEF строим аналогично треугольнику S0A0B0.

Точки A, B, C, D, E и F, лежащие в основании конуса, соединяем плавной кривой – дугой окружности, радиус которой равен l.

Развертка наклонного конуса

Рассмотрим порядок построения развертки боковой поверхности наклонного конуса методом аппроксимации (приближения).

Алгоритм

  1. Вписываем в окружность основания конуса шестиугольник 123456. Соединяем точки 1, 2, 3, 4, 5 и 6 с вершиной S. Пирамида S123456, построенная таким образом, с некоторой степенью приближения является заменой конической поверхности и используется в этом качестве в дальнейших построениях.
  2. Определяем натуральные величины ребер пирамиды, используя способ вращения вокруг проецирующей прямой: в примере используется ось i, перпендикулярная горизонтальной плоскости проекций и проходящая через вершину S.
    Так, в результате вращения ребра S5 его новая горизонтальная проекция S’5’1 занимает положение, при котором она параллельна фронтальной плоскости π2. Соответственно, S’’5’’1 – натуральная величина S5.
  3. Строим развертку боковой поверхности пирамиды S123456, состоящую из шести треугольников: S01060, S06050, S05040, S04030, S03020, S02010. Построение каждого треугольника выполняется по трем сторонам. Например, у △S01060 длина S010=S’’1’’0, S060=S’’6’’1, 1060=1’6’.

Степень соответствия приближенной развертки действительной зависит от количества граней вписанной пирамиды. Число граней выбирают, исходя из удобства чтения чертежа, требований к его точности, наличия характерных точек и линий, которые нужно перенести на развертку.

Перенос линии с поверхности конуса на развертку

Линия n, лежащая на поверхности конуса, образована в результате его пересечения с некоторой плоскостью (рисунок ниже). Рассмотрим алгоритм построения линии n на развертке.

Алгоритм

  1. Находим проекции точек A, B и C, в которых линия n пересекает ребра вписанной в конус пирамиды S123456.
  2. Определяем натуральную величину отрезков SA, SB, SC способом вращения вокруг проецирующей прямой. В рассматриваемом примере SA=S’’A’’, SB=S’’B’’1, SC=S’’C’’1.
  3. Находим положение точек A0, B0, C0 на соответствующих им ребрах пирамиды, откладывая на развертке отрезки S0A0=S’’A’’, S0B0=S’’B’’1, S0C0=S’’C’’1.
  4. Соединяем точки A0, B0, C0 плавной линией.

Развертка усеченного конуса

Описываемый ниже способ построения развертки прямого кругового усеченного конуса основан на принципе подобия.

Алгоритм

  1. Строим вспомогательный конус ε, подобный конусу ω, как это показано на рисунке выше. Для удобства построения величину диаметра d выбираем таким образом, чтобы соотношение t=D/d выражалось целым числом. В рассматриваемом примере t=2.
  2. Строим развертку боковой поверхности конуса ε – S0A01020304050A0 и на биссектрисе угла A0S0A0 отмечаем точку O0, выбрав ее расположение произвольно.
  3. Проводим прямые O0A0, O010, O020, O030, O040, O050, O0A0 и на них откладываем отрезки [O0A10]=t×|O0A0|, [O0110]= t×|O010|, [O0210]=t×|O020|, [O0310]=t×|O030|, [O0410]=t×|O040|, [O0510]=t×|O050|, [O0A10]=t×|O0A0| соответственно, где t=D/d. Соединяем точки A10, 110, 210, 310, 410, 510, A10 плавной линией.
  4. Из точек A10, 110, 210, 310, 410, 510, A10 проводим лучи, которые параллельны соответственно прямым A0S0, 10S0, 20S0, 30S0, 40S0, 50S0, A0S0, и на них откладываем отрезки A10B10, 110120, 210220, 310320, 410420, 510520, A10B10, равные l – образующей усеченного конуса. Проводим линию B10120220320420520B10.

Развертка конуса - онлайн калькулятор

Данный калькулятор может пригодится инженерам-технологам или инженерам-конструкторам, то есть всем тем, кому часто приходится рассчитывать развертку прямого конуса обычного и усеченного.

Сам калькулятор ниже, он может рассчитать все необходимые параметры развертки прямого кругового конуса.

Калькулятор рассчитывает параметры развертки прямого кругового конуса на плоскости - визуально это можно посмотреть на рисунке внизу.

The field is not filled.

'%1' is not a valid e-mail address.

Please fill in this field.

The field must contain at least% 1 characters.

The value must not be longer than% 1 characters.

Field value does not coincide with the field '%1'

An invalid character. Valid characters:'%1'.

Expected number.

It is expected a positive number.

Expected integer.

It is expected a positive integer.

The value should be in the range of [%1 .. %2]

The '% 1' is already present in the set of valid characters.

The field must be less than 1%.

The first character must be a letter of the Latin alphabet.

Su

Mo

Tu

We

Th

Fr

Sa

January

February

March

April

May

June

July

August

September

October

November

December

century

B.C.

%1 century

An error occurred while importing data on line% 1. Value: '%2'. Error: %3

Unable to determine the field separator. To separate fields, you can use the following characters: Tab, semicolon (;) or comma (,).

%3.%2.%1%4

%3.%2.%1%4 %6:%7

s.sh.

u.sh.

v.d.

z.d.

yes

no

Wrong file format. Only the following formats: %1

Please leave your phone number and / or email.

Развертка усеченного конуса. Формула площади и пример решения задачи

Каждый школьник слышал о фигуре конус. Его свойства и характеристики изучает стереометрия. Из этой фигуры можно получить ее усеченный вариант. В данной статье рассмотрим вопрос, что такое развертка усеченного конуса и как найти ее площадь.

Какую фигуру будем изучать?

Круглый прямой усеченный конус представляет собой два круга, имеющих разный диаметр, которые расположены в параллельных плоскостях. Окружности этих кругов соединены прямыми отрезками равной длины, именуемых образующими фигуры. Расстояние между круглыми основаниями называется высотой. Описанная фигура показана ниже на фото.

Получить ее можно двумя принципиально отличающимися геометрическими способами. Во-первых, можно взять обычный круглый конус и параллельной его основанию плоскостью отсечь верхнюю часть. Такое действие приведет к образованию верхнего (малого) основания усеченного конуса. Во-вторых, можно взять трапецию с двумя прямыми углами и вращать ее вокруг стороны, ограниченной этими углами. Сторона трапеции, вокруг которой будет происходить вращение, называется осью фигуры. Две параллельные стороны трапеции опишут круглые основания во время вращения, а четвертая наклонная сторона образует боковую поверхность фигуры.

Схема выше демонстрирует получение усеченного конуса с помощью сечения плоскостью.

Развертка усеченного конуса

Как мы видели, рассматриваемая фигура образована тремя поверхностями. Две из них представляют основания, а третья является боковой. Сумма площадей этих поверхностей является полной поверхностью усеченного конуса. В трехмерном пространстве ее площадь вычислять неудобно, поскольку сама величина является двумерной. В связи с этим при возникновении проблемы определения площади поверхности пространственных фигур, их принято представлять на плоскости.

В нашем случае развертку получить достаточно просто. Для этого следует мысленно отрезать по соответствующим окружностям основания от фигуры. Затем, необходимо разрезать вдоль образующей и раскрыть поверхность боковую. В итоге получится результат, показанный на фото.

Она представляет собой два разных круга и часть кругового сектора, у которого вырезан центр.

Формула площади поверхности фигуры

Для вычисления площади поверхности усеченного конуса необходимо определить эту величину для каждой части его развертки. Обозначим радиусы оснований буквами R и r. Тогда их площади будут равны:

So1 = pi*R2;

So2 = pi*r2.

Для вычисления площади боковой поверхности учтем, что ее развертка образована двумя одинаковыми генератрисами g и двумя дугами окружностей, которые имеют длину 2*pi*r и 2*pi*R. Опуская рассуждения и промежуточные математические формулы, приведем конечное выражение для площади этой части развертки фигуры. Оно имеет форму:

Sb = pi*g*(R + r).

Получив площади для оснований и боковой поверхности, можно записать формулу развертки конуса усеченного. Ее общая площадь S равна:

S = So1 + So2 + Sb = pi*(R2 + r2 + g*(R + r)).

Таким образом, площадь S фигуры однозначно определяется из знания радиусов ее оснований и длины генератрисы.

Геометрическая задача

Необходимо провести расчет развертки усеченного конуса, который имеет высоту 13 см и радиусы оснований 2 см и 7 см.

Решение данной задачи с помощью непосредственного применения формулы для S невозможно, поскольку не известна длина генератрисы g. Тем не менее, ее можно вычислить, используя такую формулу:

g = √(h2 + (R-r)2).

Это выражение можно самостоятельно получить, рассмотрев прямоугольный треугольник со сторонами g, h и (R-r), здесь h - высота усеченного конуса. Генератриса g будет равна 13,93 см (значение приведено с точностью до 0,01 см).

Осталось подставить значения генератрисы и радиусов в формулу для S, чтобы получить требуемый ответ:

S = 3,14*(72 + 22 + 13,93*(7 + 2)) ≈ 560,1 см2.

Следует не забывать, что записанная для S формула справедлива только для круглого прямого усеченного конуса.

Калькулятор конуса / усеченного конуса / усеченного конуса

Калькулятор Frustum (усеченного конуса)

Используйте форму ниже, чтобы ввести 3 значения, и будут показаны результаты остальных.

Я решил создать эту страницу, потому что знал высоту и ширину выреза в два круга для создания моих рук Бендера. Проблема была в том, что я не знал, как нарисовать узор. В конце концов я использовал Google Sketchup для создания 3D-изображения и импортировал его в Pepakura, распечатал плоский дизайн, приклеил / вырезал его на пену, а затем вырезал формы.Я решил, что должен быть способ вычислить форму, чтобы я мог просто нарисовать ее и вырезать. Мне нужна была длина линии r , длина rH и c или степень A . Введите следующие 3 значения для результатов.
Пример с верхним отверстием диаметром 10 дюймов, нижним 12 дюймов и высотой 7,5 дюймов.

Оригинальный способ, нарисованный от руки, был найден на сайте homedistiller.org, но я хотел иметь возможность вычислить общую высоту, тогда я мог бы использовать циркуль, чтобы нарисовать ее на куске синтры / пены. В некоторых онлайн-калькуляторах есть некоторые формулы, но не все, что мне нужно. Затем я наткнулся на изображение выше и создал эту страницу, чтобы рассчитать все, что мне нужно.

1. Вы знаете, какой длины должна быть усеченная пирамида, какой ширины она должна быть у основания и какой ширины она должна быть на конце сопла. Нарисуйте основание усеченной кости. Усеченный конус - это часть конуса или конуса с отрубленным кончиком.Я отметил базу здесь буквой «А».

2. Под углом 90 градусов к середине основания «А» нарисуйте линию той длины, на которую вы хотите, чтобы ваша усеченная вершина. Вверху и параллельно с буквой «А» нарисуйте конец усеченной кости «В».

3. Проведите прямые линии от каждого конца «A» до соответствующего конца «B», но проводите линии до тех пор, пока они не встретятся. Вы рисуете конус / треугольник, из которого происходит усеченная пирамида.
4. Поместите заостренный конец циркуля на кончик конуса и проведите дугу наружу от одного конца буквы «А».Помните, что ваш компас должен быть такого же размера, как усеченная пирамида, которую вы делаете. Для наших приложений это означает довольно большой компас. Однако циркуль можно заменить обрывком веревки или куском более твердого материала с двумя просверленными в нем отверстиями: 1 там, где должен быть остроконечный наконечник, и 1, где идет карандаш. Эти замены не будут такими точными.

5. Нарисуйте аналогичную дугу наружу от «B» с той же стороны, с которой вы рисовали дугу на «A».

6. Теперь умножьте длину «A» на «пи».«Пи» - бесконечное число, которое связывает радиус / диаметр круга с его длиной окружности. Для наших целей «пи» можно понимать как около 3,142.
E.G. Если основание моей усеченной кости составляет 200 мм в диаметре (т.е. длина буквы «А» составляет 200 мм), тогда окружность основания моей усеченной кости, умноженная на 3,142, будет 628 мм.
Хорошо, теперь у вас есть окружность. Допустим, это 628 мм. Разделите это число на произвольное число, скажем 20. Получается 31,4 мм.
Теперь установите компас на это расстояние, например.г. 31,4 мм. Теперь, начиная с того места, где начинается дуга, «пройдитесь» компасом по дуге 20 раз. Это даст вам базовую окружность пирамиды, измеренную на вашей дуге.
N.B. Чем больше произвольное число, на которое вы делите окружность, тем выше ваша точность (и тем сильнее болит ваша задница).

7. Затем, измерив длину окружности дуги, проведите прямую линию от последней отметки до вершины конуса / треугольника.

8. Вот и все, выкройка усеченной вершины "C";

Как сделать свой компас:
.

Усеченный конус | Superprof

Усеченный конус - это результат разрезания конуса плоскостью, параллельной основанию, и удаления части, содержащей вершину.

Высота - это отрезок прямой, соединяющий два основания перпендикулярно.

Радиусы - это радиусы их оснований.

Высота наклона - это кратчайшее возможное расстояние между краями двух оснований.

Наклонная высота усеченного конуса получается путем применения теоремы Пифагора для заштрихованного треугольника:

Развертывание усеченного конуса

Боковая площадь усеченного конуса 9000

Площадь усеченного конуса

Объем усеченного конуса

Рассчитайте поперечную площадь, площадь поверхности и объем усеченного конуса радиусом 2 и 6 см и высотой 10 см.

.

Усеченный конус - Калькулятор геометрии

1D линия 2D правильных многоугольников:
равносторонний треугольник, квадрат, пятиугольник, шестиугольник, семиугольник, восьмиугольник, нонагон, десятиугольник, шестиугольник, двенадцатигранник, шестиугольник, N-угольник, многоугольник кольцо

другие многоугольники:
треугольник, прямоугольный треугольник, равнобедренный треугольник ИК-треугольник, четырехугольник, прямоугольник, золотой прямоугольник, ромб, параллелограмм, полуквадратный воздушный змей, воздушный змей, воздушный змей, правая трапеция, равнобедренная трапеция, трех равносторонняя трапеция, трапеция, циклический четырехугольник, тангенциальный четырехугольник, стрелка, вогнутый четырехугольник, крест Антипараллелограмм, Форма дома, Симметричный пятиугольник, Вырезанный прямоугольник, Вогнутый пятиугольник, Вогнутый правильный пятиугольник, Параллелогон, Вытянутый шестиугольник, Вогнутый шестиугольник, Стрелка-шестиугольник, Прямоугольный шестиугольник, L-образная форма, Острый перегиб, T-образная форма, Усеченный квадрат, Рамка, Открытая рамка, сетка, крест, форма X, форма H, тройная звезда, четыре звезды, пентаграмма, гексаграмма, уникурсальная гексаграмма, октаграмма, звезда Лакшми, многоугольник с двойной звездой, многоугольник, многоугольник

90 004 Круглые формы:
Круг, Полукруг, Круговой сектор, Круговой сегмент, Круговой слой, Круговой центральный сегмент, Круглый угол, Круглый угол, Круговая касательная стрелка, Форма капли, Полумесяц, Остроконечный овал, Ланцетная арка, Бугорок, Кольцо, Кольцевой сектор , Изогнутый прямоугольник, закругленный многоугольник, закругленный прямоугольник, эллипс, полуэллипс, эллиптический сегмент, эллиптический сектор, эллиптическое кольцо, стадион, спираль, бревно.Спираль, Треугольник Рело, Циклоида, Двойная циклоида, Астроид, Гипоциклоида, Кардиоида, Эпициклоида, Параболический сегмент, Сердце, Треугольник, Межугловой треугольник, Круговой треугольник дуги, Четырехугольник Interarc, Межкруговый четырехугольник, Круговой четырехугольник дуги, Круговой многоугольник дуги, Коготь - Ян, Арбелос, Салинон, Выпуклость, Луна, Три круга, Поликруг, Многоугольник с закругленными краями, Роза, Шестеренка, Овал, Профиль яйца, Лемниската, Сквикул, Круглый квадрат, Дигон, Сферический треугольник

3D Платоновых тел:
тетраэдр, куб, октаэдр, додекаэдр, икосаэдр

архимедова Solids:
усеченный тетраэдр, кубооктаэдр, усеченный куб, усеченный октаэдр, ромбокубооктаэдр, усеченный кубооктаэдр, икосододекаэдр, усеченный додекаэдр, усеченный икосаэдр, Snub куб, ромбоикосододекаэдр , Усеченный икосододекаэдр, Snub Додекаэдр

Каталонских Сухой остаток:
триакистетраэдр, ромбический додекаэдр, триакисоктаэдр, тетракисгексаэдр, дельтоидальный икоситетраэдр, гексакис октаэдр, ромбический триаконтаэдр, триакисикосаэдр, пентакисдодекаэдр, Пятиугольные Icositetrahedron, дельтоидальный гексеконтаэдр, гексакис Икосаэдр, Пятиугольный гексеконтаэдр

Твердые тела Джонсона:
Пирамиды, купола, ротонда, удлиненные пирамиды, гиро-продолговатые пирамиды, бипирамиды, удлиненные бипирамиды, гиро-продолговатая квадратная дипирамида, гиробифастигедрон, дисфагениум Sphenocorona, Disphenocingulum

Другие многогранники:
Кубоид, квадратный столб, треугольная пирамида, квадратная пирамида, правильная пирамида, пирамида, правильная пирамида, створка, правильная бипирамида, бипирамида, бифрустум, клин-фрустум, клиновидная пирамида Полутетраэдр, ромбоэдр, параллелепипед, правильная призма, призма, наклонная призма, антикуб, антипризма, призматоид, трапецоэдр, дисфеноид, угол, общий тетраэдр, клин-кубоид, полукубоид, скошенный кубоид, слиток, скошенная трехгранная призма , Усеченный кубоид, кубоид с тупыми краями, удлиненный додекаэдр, усеченный ромбоэдр, обелиск, изогнутый кубоид, полый кубоид, полая пирамида, полый ствол, звездная пирамида, звездчатый октаэдр, малый звездчатый додекаэдр, большой звездчатый додекаэдр70004, большой додекаэдр70004 Круглые формы:
Сфера, полусфера, сферический угол, цилиндр, отрезной цилиндр, наклонный цилиндр, изогнутый цилиндр, эллиптический цилиндр, обобщенный Цилиндр, конус, усеченный конус, косой круговой конус, эллиптический конус, биконус, усеченный биконус, заостренный столб, закругленный конус, капля, сфероид, эллипсоид, полуэллипсоид, сферический сектор, сферическая крышка, сферический сегмент, сферический центральный сегмент, двойной калотт , Сферический клин, полуцилиндр, диагонально разрезанный пополам цилиндр, цилиндрический клин, цилиндрический сектор, цилиндрический сегмент, цилиндр с плоским концом, полуконус, конический сектор, конический клин, сферическая оболочка, полусферическая оболочка, цилиндрическая оболочка, цилиндрическая оболочка с вырезом, наклонная цилиндрическая оболочка , Полый конус, усеченный полый конус, сферическое кольцо, тор, шпиндельный тор, тороид, сектор тора, сектор тороида, арка, тетраэдр Рело, капсула, сегмент капсулы, двойная точка, антиконус, усеченный антиконус, сферический цилиндр, линза, вогнутый Линза, ствол, форма яйца, параболоид, гиперболоид, олоид, твердые тела Штейнмеца, твердые тела вращения

4D Тессеракт, Гиперсфера


Anzeige

Расчеты на усеченном правом круговом конусе (усеченном конусе).Усеченный конус - это конус с отрезанным прямым концом. Основание - это больший круг, верхняя поверхность - меньший круг. Наклонная высота - это кратчайшее расстояние между двумя кругами, боковая поверхность - это поверхность без кругов. Введите радиусы и высоту и выберите количество десятичных знаков. Затем нажмите Рассчитать. Для расчета общих усеченных конусов см. Усеченный конус.



Формулы:
s = √ (R - r) ² + h²
L = (R + r) * π * с
A = L + πr² + πR²
V = h * π / 3 * (R² + Rr + r²)

пи:
π = 3.141592653589793 ...

Радиусы, высота и наклонная высота имеют одну и ту же единицу измерения (например, метр), поверхности имеют эту единицу в квадрате (например, квадратный метр), объем имеет эту единицу в степени трех (например, кубический метр). Аудио / видео имеет это устройство -1 .

Anzeige

Поделиться:

© Jumk.de Webprojects

Anzeige

.

Усеченный полый конус - Калькулятор геометрии

1D линия 2D правильных многоугольников:
равносторонний треугольник, квадрат, пятиугольник, шестиугольник, семиугольник, восьмиугольник, нонагон, десятиугольник, шестиугольник, двенадцатигранник, шестиугольник, N-угольник, многоугольник кольцо

другие многоугольники:
треугольник, прямоугольный треугольник, равнобедренный треугольник ИК-треугольник, четырехугольник, прямоугольник, золотой прямоугольник, ромб, параллелограмм, полуквадратный воздушный змей, воздушный змей, воздушный змей, правая трапеция, равнобедренная трапеция, трех равносторонняя трапеция, трапеция, циклический четырехугольник, тангенциальный четырехугольник, стрелка, вогнутый четырехугольник, крест Антипараллелограмм, Форма дома, Симметричный пятиугольник, Вырезанный прямоугольник, Вогнутый пятиугольник, Вогнутый правильный пятиугольник, Параллелогон, Вытянутый шестиугольник, Вогнутый шестиугольник, Стрелка-шестиугольник, Прямоугольный шестиугольник, L-образная форма, Острый перегиб, T-образная форма, Усеченный квадрат, Рамка, Открытая рамка, сетка, крест, форма X, форма H, тройная звезда, четыре звезды, пентаграмма, гексаграмма, уникурсальная гексаграмма, октаграмма, звезда Лакшми, многоугольник с двойной звездой, многоугольник, многоугольник

90 004 Круглые формы:
Круг, Полукруг, Круговой сектор, Круговой сегмент, Круговой слой, Круговой центральный сегмент, Круглый угол, Круглый угол, Круговая касательная стрелка, Форма капли, Полумесяц, Остроконечный овал, Ланцетная арка, Бугорок, Кольцо, Кольцевой сектор , Изогнутый прямоугольник, закругленный многоугольник, закругленный прямоугольник, эллипс, полуэллипс, эллиптический сегмент, эллиптический сектор, эллиптическое кольцо, стадион, спираль, бревно.Спираль, Треугольник Рело, Циклоида, Двойная циклоида, Астроид, Гипоциклоида, Кардиоида, Эпициклоида, Параболический сегмент, Сердце, Треугольник, Межугловой треугольник, Круговой треугольник дуги, Четырехугольник Interarc, Межкруговый четырехугольник, Круговой четырехугольник дуги, Круговой многоугольник дуги, Коготь - Ян, Арбелос, Салинон, Выпуклость, Луна, Три круга, Поликруг, Многоугольник с закругленными краями, Роза, Шестеренка, Овал, Профиль яйца, Лемниската, Сквикул, Круглый квадрат, Дигон, Сферический треугольник

3D Платоновых тел:
тетраэдр, куб, октаэдр, додекаэдр, икосаэдр

архимедова Solids:
усеченный тетраэдр, кубооктаэдр, усеченный куб, усеченный октаэдр, ромбокубооктаэдр, усеченный кубооктаэдр, икосододекаэдр, усеченный додекаэдр, усеченный икосаэдр, Snub куб, ромбоикосододекаэдр , Усеченный икосододекаэдр, Snub Додекаэдр

Каталонских Сухой остаток:
триакистетраэдр, ромбический додекаэдр, триакисоктаэдр, тетракисгексаэдр, дельтоидальный икоситетраэдр, гексакис октаэдр, ромбический триаконтаэдр, триакисикосаэдр, пентакисдодекаэдр, Пятиугольные Icositetrahedron, дельтоидальный гексеконтаэдр, гексакис Икосаэдр, Пятиугольный гексеконтаэдр

Твердые тела Джонсона:
Пирамиды, купола, ротонда, удлиненные пирамиды, гиро-продолговатые пирамиды, бипирамиды, удлиненные бипирамиды, гиро-продолговатая квадратная дипирамида, гиробифастигедрон, дисфагениум Sphenocorona, Disphenocingulum

Другие многогранники:
Кубоид, квадратный столб, треугольная пирамида, квадратная пирамида, правильная пирамида, пирамида, правильная пирамида, створка, правильная бипирамида, бипирамида, бифрустум, клин-фрустум, клиновидная пирамида Полутетраэдр, ромбоэдр, параллелепипед, правильная призма, призма, наклонная призма, антикуб, антипризма, призматоид, трапецоэдр, дисфеноид, угол, общий тетраэдр, клин-кубоид, полукубоид, скошенный кубоид, слиток, скошенная трехгранная призма , Усеченный кубоид, кубоид с тупыми краями, удлиненный додекаэдр, усеченный ромбоэдр, обелиск, изогнутый кубоид, полый кубоид, полая пирамида, полый ствол, звездная пирамида, звездчатый октаэдр, малый звездчатый додекаэдр, большой звездчатый додекаэдр70004, большой додекаэдр70004 Круглые формы:
Сфера, полусфера, сферический угол, цилиндр, отрезной цилиндр, наклонный цилиндр, изогнутый цилиндр, эллиптический цилиндр, обобщенный Цилиндр, конус, усеченный конус, косой круговой конус, эллиптический конус, биконус, усеченный биконус, заостренный столб, закругленный конус, капля, сфероид, эллипсоид, полуэллипсоид, сферический сектор, сферическая крышка, сферический сегмент, сферический центральный сегмент, двойной калотт , Сферический клин, полуцилиндр, диагонально разрезанный пополам цилиндр, цилиндрический клин, цилиндрический сектор, цилиндрический сегмент, цилиндр с плоским концом, полуконус, конический сектор, конический клин, сферическая оболочка, полусферическая оболочка, цилиндрическая оболочка, цилиндрическая оболочка с вырезом, наклонная цилиндрическая оболочка , Полый конус, усеченный полый конус, сферическое кольцо, тор, шпиндельный тор, тороид, сектор тора, сектор тороида, арка, тетраэдр Рело, капсула, сегмент капсулы, двойная точка, антиконус, усеченный антиконус, сферический цилиндр, линза, вогнутый Линза, ствол, форма яйца, параболоид, гиперболоид, олоид, твердые тела Штейнмеца, твердые тела вращения

4D Тессеракт, Гиперсфера


Anzeige

Расчеты на усеченном полом правом круговом конусе.Усеченный полый конус представляет собой полый конус с прямым концом, отрезанным внутри полой области, или усеченный конус, из середины которого удален такой же усеченный конус меньшего размера. Основание - большее кольцевое пространство, верхняя поверхность - меньшее кольцевое пространство. Введите один внешний и один внутренний радиус, толщину или еще один радиус и высоту. Выберите количество знаков после запятой, затем нажмите «Рассчитать».



Формулы:
d = R - S = r - s
A = π * [(R + r) * √ (R - r) ² + h² + (S + s) * √ (S - s) ² + h² + (R² - S² + r² - s²)]
V = h * π / 3 * (R² + Rr + r² - S² - Ss - s²)

pi:
π = 3.141592653589793 ...

Радиусы, толщина и высота имеют одну и ту же единицу измерения (например, метр), поверхность имеет эту единицу в квадрате (например, квадратный метр), объем имеет эту единицу с точностью до трех (например, кубический метр). A / V имеет этот блок -1 .

Anzeige

Поделиться:

© Jumk.de Webprojects

Anzeige

.

Объем круглого усеченного конуса Калькулятор

[1] 2020/12/04 07:22 Мужчина / 50-летний уровень / Пенсионер / Очень /

Цель использования
Расчет внутреннего объема Instant Pot

[2] 2020/11/13 08:39 Женский / До 20 лет / Высшая школа / Университет / Аспирант / Очень /

Цель использования
Расчет объема кофейной чашки

[3] 2020 / 10/01 08:18 Мужчина / Уровень 30 лет / Инженер / Очень /

Цель использования
Рассчитать объем воды в коробке клапана в земле, чтобы я мог определить расход воды в землю.

[4] 2020/09/27 03:51 Женщина / Уровень 40 лет / Домохозяйка / Полезно /

Цель использования
Требуется для определения объема садового контейнера. А теперь посчитаем, сколько галлонов!

[5] 2020/09/05 19:49 Мужской / 50-летний уровень / Самозанятые люди / Очень /

Цель использования
Завод по выращиванию устриц, расчет размеров для создания корзин для устриц: 1 бушель, полтора бушеля

[6] 2020/09/03 06:27 Мужчина / 60 лет и старше / Пенсионер / Очень /

Цель использования
Примерная вместимость деревянной урны, для которой я делаю умерший родственник

[7] 2020/08/19 04:09 Мужчина / 30-летний уровень / Учитель / исследователь / Очень /

Цель использования
Получение площади поверхности для определения пределов для проверки очистки различных компоненты при производстве активных фармацевтических ингредиентов.

[8] 2020/08/07 22:51 Мужчина / Уровень 40 лет / Офисный работник / Государственный служащий / Очень /

Цель использования
Расчет бетона, необходимого для грунтового основания для 50-футовый флагшток. Кстати, 63 кубических фута.

[9] 2020/07/07 22:38 Мужчина / 60 лет и старше / Пенсионер / Очень /

Цель использования
Смешивание эпоксидной смолы в соотношении 4: 1 в конической емкости, с использованием линейных измерений вверх по наклонной стороне.

База r = 23,5 мм
Конечная поверхность r = 26 мм
h = 20 мм

[10] 2020/06/29 20:01 Женщина / 60 лет и старше / Пенсионер / Очень /

Цель использования
Объем контейнера для растений
Комментарий / запрос
Большое спасибо - мои математические дни далеко!
.

Калькулятор конуса

Форма конуса

r = радиус
h = высота
s = наклонная высота
В = объем
L = площадь боковой поверхности
B = площадь основания
A = общая площадь поверхности
π = пи = 3.1415926535898
√ = квадратный корень

Использование калькулятора

Этот онлайн-калькулятор рассчитает различные свойства правильного кругового конуса с учетом любых двух известных переменных. Термин «круглая» поясняет эту форму как пирамиду с круглым поперечным сечением. Термин «справа» означает, что вершина конуса центрируется над основанием. Сам по себе термин «конус» часто означает правильный круговой конус.

Единицы: Обратите внимание, что единицы показаны для удобства, но не влияют на вычисления. Единицы измерения указывают порядок результатов, например футы, футы 2 или футы 3 . Например, если вы начинаете с мм и знаете r и h в мм, ваши расчеты приведут к s в мм, V в мм 3 , L в мм 2 , B в мм 2 и A в мм 2 .

Ниже приведены стандартные формулы для конуса.Вычисления основаны на алгебраическом манипулировании этими стандартными формулами.

Формулы кругового конуса для радиуса r и высоты h:

  • Объем конуса:
  • Наклонная высота конуса:
  • Площадь боковой поверхности конуса:
    • L = πrs = πr√ (r 2 + h 2 )
  • Площадь основания конуса (кружка):
  • Общая площадь конуса:
    • A = L + B = πrs + πr 2 = πr (s + r) = πr (r + √ (r 2 + h 2 ))

Расчет круглого конуса:

Используйте следующие дополнительные формулы наряду с формулами выше.

  • По заданным радиусу и высоте рассчитайте наклонную высоту, объем, площадь боковой поверхности и общую площадь поверхности.
    По заданным r, h найти s, V, L, A
  • По заданному радиусу и наклонной высоте рассчитайте высоту, объем, площадь боковой поверхности и общую площадь поверхности.
    По заданному r, s найти h, V, L, A
  • По заданному радиусу и объему рассчитайте высоту, наклонную высоту, площадь боковой поверхности и общую площадь поверхности.
    Для данного r, V найти h, s, L, A
  • По заданному радиусу и площади боковой поверхности рассчитайте высоту, наклонную высоту, объем и общую площадь поверхности.
    Для данного r, L найти h, s, V, A
    • с = L / (πr)
    • h = √ (с 2 - r 2 )
  • По заданному радиусу и общей площади поверхности рассчитайте высоту, наклонную высоту, объем и площадь боковой поверхности.
    Для данного r, A найти h, s, V, L
    • s = [A - (πr 2 )] / (πr)
    • h = √ (с 2 - r 2 )
  • Зная высоту и наклонную высоту, рассчитайте радиус, объем, площадь боковой поверхности и общую площадь поверхности.
    По заданному h, s найти r, V, L, A
  • По заданной высоте и объему рассчитайте радиус, наклонную высоту, площадь боковой поверхности и общую площадь поверхности.
    По заданному h, V найти r, s, L, A
    • r = √ [(3 * v) / (π * h)]
  • Зная наклонную высоту и площадь боковой поверхности, рассчитайте радиус, высоту, объем и общую площадь поверхности.
    По s, L найти r, h, V, A
    • r = л / (π * с)
    • h = √ (с 2 - r 2 )

Список литературы

Вайсштейн, Эрик В."Конус". Из MathWorld - Интернет-ресурс Wolfram.
http://mathworld.wolfram.com/Cone.html

.

Смотрите также