Расход тепла на 1 м2 площади


Расчет годового расхода тепловой энергии на отопление и вентиляцию

Годовой расход тепловой энергии на отопление и вентиляцию.

Введите свои значения (значения десятых отделяются точкой, а не запятой ! ) в поля окрашенных строк и нажмите кнопку Вычислить, под таблицей.
Для пересчета - измените введенные цифры и нажмите Вычислить.
Для сброса всех введенных цифр нажмите на клавиатуре одновременно Ctrl и F5.

Пояснения к калькулятору годового расхода тепловой энергии на отопление и вентиляцию.

Исходные данные для расчета:
  • Основные характеристики климата, где расположен дом:
    • Средняя температура наружного воздуха отопительного периода to.п;
    • Продолжительность отопительного периода: это период года со средней суточной температурой наружного воздуха не более +8°C - zo.п.
  • Основная характеристика климата внутри дома: расчетная температура внутреннего воздуха tв.р, °С
  • Основная тепловая характеристики дома: удельный годовой расход тепловой энергии на отопление и вентиляцию, отнесенный к градусо-суткам отопительного периода, Вт·ч/(м2•°C•сут).
Характеристики климата.

Параметры климата для расчета отопления в холодный период для разных городов России можно посмотреть здесь: (Карта климатологии) или в СП 131.13330.2012 «СНиП 23-01–99* “Строительная климатология”. Актуализированная редакция»
Например, параметры для расчета отопления для Москвы (Параметры Б) такие:

  • Средняя температура наружного воздуха отопительного периода: -2,2 °C
  • Продолжительность отопительного периода: 205 сут. (для периода со средней суточной температурой наружного воздуха не более +8°C).
Температура внутреннего воздуха.

Расчетную температуру внутреннего воздуха вы можете установит свою, а можете взять из нормативов (смотрите таблицу на рисунке 2 или во вкладке Таблица 1).

В расчетах применяется величина Dd - градусо-сутки отопительного периода (ГСОП), °С×сут. В России значение ГСОП численно равно произведению разности среднесуточной температуры наружного воздуха за отопительный период (ОП) to.п и расчетной температуры внутреннего воздуха в здании tв.р на длительность ОП в сутках: Dd = (to.пtв.р)•zo.п.

Удельный годовой расход тепловой энергии на отопление и вентиляцию

Нормированные величины.

Удельный расход тепловой энергии на отопление жилых и общественных зданий за отопительный период не должен превышает приведенных в таблице величин по СНиП 23-02-2003 . Данные можно взять из таблицы на картинке 3 или подсчитать на вкладке Таблица 2 ( переработанный вариант из [Л.1]). По ней выберите для своего дома (площадь / этажность ) значение удельного годового расхода и вставьте в калькулятор. Это характеристика тепловых качеств дома. Все строящиеся жилые дома для постоянного проживания должны отвечать этому требованию. Базовый и нормируемый по годам строительства удельный годовой расход тепловой энергии на отопление и вентиляцию основаны на проекте приказа Министерства Регионального развития РФ «Об утверждении требований энергетической эффективности зданий, строений, сооружений», где указаны требования к базовым характеристикам (проект от 2009 года), к характеристикам нормируемым с момента утверждения приказа (условно обозначил Н.2015) и с 2016 года (Н.2016).

Расчетная величина.

Эта величина удельного расхода тепловой энергии может быть указана в проекте дома, её можно подсчитать на основании проекта дома, можно оценить ее размер на основе реальных тепловых измерений или размеров потребленной за год энергии на отопление. Если эта величина указана в Вт·ч/м2, то её надо разделить на ГСОП в °C•сут., получившуюся величину сравнить с нормированной для дома с подобной этажностью и площадью. Если она меньше нормированной, то дом удовлетворяет требованиям по теплозащите, если нет, то дом следует утеплить.

Свои цифры.

Значения исходных данных для расчета даны для примера. Вы можете вставить свои значения в поля на желтом фоне. В поля на розовом фоне вставляете справочные или расчетные данные.

О чем могут сказать результаты расчета.

Удельный годовой расход тепловой энергии, кВт·ч/м2 - можно использовать, чтобы оценить стоимость топлива, расходуемого на отопление и вентиляцию дома в течении отопительного периода, необходимое количество топлива на год для отопления и вентиляции. По количеству топлива можно выбрать емкость резервуара (склада) для топлива, периодичность его пополнения.

Годовой расход тепловой энергии, кВт·ч - абсолютная величина потребляемой за год энергии на отопление и вентиляцию. Изменяя значения внутренней температуры можно увидеть, как изменяется эта величина, оценить экономию или перерасход энергии от изменения поддерживаемой внутри дома температуры, увидеть как влияет неточность термостата на потребление энергии. Особенно наглядно это будет выглядеть в пересчете на рубли.

Градусо-сутки отопительного периода, °С·сут. - характеризуют климатические условия внешние и внутренние. Поделив на это число удельный годовой расход тепловой энергии в кВт·ч/м2, вы получите нормированную характеристику тепловых свойств дома, отвязанную от климатических условий (это может помочь в выборе проекта дома, теплоизолирующих материалов).

О точности расчетов.

На территории Российской Федерации происходят определенные изменения климата. Исследование эволюции климата показало, что в настоящее время наблюдается период глобального потепления. Согласно оценочному докладу Росгидромета, климат России изменился сильнее (на 0,76 °C), чем климат Земли в целом, причем самые значительные изменения произошли на европейской территории нашей страны. На рис. 4 видно, что повышение температуры воздуха в Москве за период 1950–2010 годов происходило во все сезоны. Наиболее существенным оно было в холодный период (0,67 °C за 10 лет).[Л.2]

Основными характеристиками отопительного периода являются средняя температура отопительного сезона, °С, и продолжительность этого периода. Естественно, что ежегодно их реальное значение меняется и, поэтому, расчеты годового расхода тепловой энергии на отопление и вентиляцию домов являются лишь оценкой реального годового расхода тепловой энергии. Результаты этого расчета позволяют сравнить стоимость топлива, расходуемого на отопление и вентиляцию дома в течении отопительного периода.

Приложение:

Литература:

Калькулятор расхода тепловой энергии

ГлавнаяКалькулятор расхода тепловой энергии

Введите данные

Город

Абакан

Анадырь

Архангельск

Астрахань

Барнаул

Белгород

Биробиджан

Благовещенск

Брянск

Владивосток

Владикавказ

Владимир

Волгоград

Вологда

Воронеж

Грозный

Дмитров

Екатеринбург

Иваново

Ижевск

Иркутск

Йошкар-Ола

Казань

Калининград

Калуга

Кашира (Моск. обл.)

Кемерово

Киров (Вятка)

Комсомольск-на-Амуре

Кострома

Краснодар

Красноярск

Курган

Курск

Кызыл

Липецк

Магадан

Майкоп

Махачкала

Москва

Мурманск

Нальчик

Нижний Новгород

Новгород

Новосибирск

Омск

Орел

Оренбург

Пенза

Пермь

Петрозаводск

Петропавловск-Камчатский

Псков

Ростов-на-Дону

Рязань

Салехард

Самара

Санкт-Петербург

Саранск

Смоленск

Сочи

Старополь

Сургут

Сыктывкар

Тамбов

Тверь

Тихвин (Лен. обл.)

Томск

Тула

Тюмень

Улан-Удэ

Ульяновск

Уфа

Хабаровск

Ханты-Мансийск

Чебоксары

Челябинск

Черкесск

Чита

Элиста

Южно-Сахалинск

Ярославль

Тип здания

Многоквартирные дома (на этапах проектирования, строительства, сдачи в эксплуатации), гостиницы, общежитияПоликлиники и лечебные учреждения, дома-интернатыДошкольные учреждения, хосписыСервисного обслуживания, культурно-досуговой деятельности, технопарки, складыАдминистративного назначения (офисы)Прочие общественные здания

Этажность

1234567891012

Расчетная температура внутреннего воздуха здания, C

Рассчитать

Расчет градусосуток отопительного периода: Расчет базового значения удельного расхода энергии на отопление согласно Приказу Министерства строительства и жилищно-коммунального хозяйства Российской Федерации №1550/пр от 17.11.2017:

кВтч/м2

Цели по удельному потреблению тепловой энергии на отопление

Проектирование тепловой изоляции в проектно-расчетном центре ТехноНИКОЛЬ

Заказать проект

Сколько тепла кВТ нам требуется для обогрева жилья? Считаем сами!

Если мы собираемся по максимуму экономить в той или иной сфере жизни, то необходимо хорошо представлять: куда, в каких количествах и на что тратятся наши деньги. А одной из наиболее чувствительных статей расходов семейного бюджета в наше время становятся коммунальные платежи. И если с затратами на электроэнергию относительная ясность имеется, так как по большей части все на виду и довольно понятно, то с отоплением – несколько сложнее.

Сколько тепла нам требуется для обогрева жилья?Сколько тепла нам требуется для обогрева жилья?

Неважно, какая схема или система применяется для этих целей, в первую очередь необходимо обладать информацией, сколько тепла нам требуется для обогрева жилья? Да, вопрос звучит именно так, пока без перехода в «денежную плоскость». Да мы и не сможет спрогнозировать финансовые расходы, пока не выразим требуемую тепловую энергию в каких-то понятных величинах. Например, в киловаттах.

Вот этим и займемся сегодня.

Немного общей информации – что такое требуемое количество тепла?

Очень вкратце,  все это и так известно – просто требуется небольшая систематизация.

Современному человеку для комфортного проживания требуется создание определённого микроклимата, одной из важнейших составляющих которого является температура воздуха в помещении. И хотя «тепловые пристрастия» могут разниться, можно смело утверждать, что для большинства людей эта зона «температурного комфорта» лежит в диапазоне 18÷23 градуса.

Но когда на улице, например, отрицательная температура, то естественные термодинамические процессы стремятся все подвести под «общую планку», и тепло начинает из жилой зоны уходить. Тепловые потери – это совершенно нормальное с точки зрения физики явление. Вся система утепления жилья направлена на максимальное снижение таких потерь, но полностью их устранить невозможно. А отсюда вывод — отопление дома как раз и предназначено для восполнения этих самых тепловых потерь.

От тепловых потерь – никуда не деться, но очень важно хотя бы постараться свести их к возможному минимуму.От тепловых потерь – никуда не деться, но очень важно хотя бы постараться свести их к возможному минимуму.

Как определиться с ними их количественно?

Простейший способ расчета необходимой тепловой мощности основывается на утверждении, что на каждый квадратный метр площади требуется 100 ватт тепла. Или — 1 кВт на 10 м².

Но даже не будучи специалистом, можно задуматься — а как такая «уравниловка» сочетается со спецификой конкретных домов и помещений в них, с размещением зданий на местности, с климатическими условиями региона проживания?

Так что лучше применить иной, более «скрупулезный» метод подсчета, в котором будет приниматься во внимание множество различных факторов. Именно такой алгоритм и заложен в основу предлагаемого ниже калькулятора.

Важно – вычисления проводятся для каждого отапливаемого помещения дома или квартиры отдельно. И лишь в конце подбивается общая сумма потребной тепловой энергии. Проще всего будет составить небольшую таблицу, в строках которой перечислить все комнаты с необходимыми для расчетов данными. Тогда, при наличии у хозяина под рукой плана своих жилых владений, много времени вычисления не займут.

И еще одно замечание. Результат может показаться весьма завышенным. Но мы должны правильно понимать – в итоге показывается то количество тепла, которое требуется для восполнения теплопотерь в самых неблагоприятных условиях. То есть – для поддержания температуры в помещениях +20 ℃ при самых низких температурах на улице, характерных для региона проживания. Иными словами — на пике зимних холодов в доме будет тепло.

Но такая супер-морозная погода, как правило, стоит весьма ограниченное время. То есть система отопления будет по большей части работать на более низкой мощности. А это означает, этот никакого дополнительного запаса закладывать особого смысла нет. Эксплуатационный резерв мощности будет и без того внушительным.

Ниже расположен калькулятор, а под ним будут размещены необходимые краткие пояснения по работе с программой.

Калькулятор расчета необходимой тепловой мощности для отопления помещений

Перейти к расчётам

Пояснения по проведению расчетов

Последовательно уносим данные в поля калькулятора.

  • Первым делом определим климатические особенности – указанием примерной минимальной температуры, свойственной  региону проживания в самую холодную декаду зимы. Естественно, речь идет о нормальной для своего региона температуре, а не о каких-то «рекордах» в ту или иную стороны.

Кстати, понятное дело, это поле не будет меняться при расчетах для всех помещений дома. В остальных полях – возможны вариации.

  • Далее идет группа из двух полей, в которых указываются площадь помещения (точно) и высота потолков (выбор из списка).
  • Следующая группа данных учитывает особенности расположения помещения:

Количеств внешних стен, то есть контактирующих с улицей (выбор из списка, от 0 до 3).

Расположение внешней стены относительно стороны света. Есть стены, регулярно получающие заряд тепловой энергии от солнечных лучей. Но северная стена, например, солнца не видит вообще никогда.

— Если на местности, где расположен дом, выражено преобладание какого-то направления зимнего ветра (устойчивая роза ветров), то это тоже можно принять во внимание. То есть указать, находится ли внешняя стена на наветренной, подветренной или параллельной направлению ветра стороне. Если таких данных нет, то оставляем по умолчанию, и программа рассчитает, как для самых неблагоприятных условий.

— Далее, указывается, насколько утеплены стены. Выбирается из трех предложенных вариантов. Точнее даже, из двух, так как в доме с вообще неутепленными стенами затевать отопление — абсолютная бессмыслица.

— Два схожих поля поросят указать, с чем соседствует помещение «по вертикали», то есть что расположено сверху и снизу. Это поможет оценить размеры теплопотерь через полы и перекрытия.

  • Следующая группа касается окон в помещении. Здесь важно и их количество, и размеры, и тип, в том числе – особенности стеклопакетов. По совокупности этих данных программа выработает поправочный коэффициент к результату расчетов.
  • Наконец, на количество теплопотерь серьёзно влияет наличие в комнате дверей, выходящих на улицу, на балкон, в холодный подъезд и т.п. Если дверями регулярно в течение дня пользуются, то любое их открытие сопровождается притоком холодного воздуха. Понятно, что это требует возмещения в форме дополнительной тепловой мощности.

Все данные внесены – можно «давить на кнопку». В результате пользователь сразу получит искомое значение тепловой мощности для конкретного помещения.

Как уже говорилась, сумма всех значений даст результат за весь дом (за квартиру) в целом, в киловаттах.

По этой величине, считая ее минимумом, подбирают, кстати, и котел отопления. И именно эта суммарная величина понадобится, когда придёт время считать реальные денежные расходы на эксплуатацию системы отопления.

Советуем ознакомиться с более подробным материалом про подбор котла отопления для частного дома,  а также с материалом, какой вид топлива самый экономичный для обогрева дома.

А данные по каждой из комнат тоже весьма полезны — для подбора и расстановки радиаторов отопления, или для выбора подходящей модели электрического обогревателя.

Расчёт отопления дома. Расчет расхода тепла на отопление разноэтажных жилых зданий.

КАТАЛОГ ТОВАРОВ

  • Бойлеры
    • Бойлеры
    • Буферные емкости
    • Косвенного нагрева
    • Электрические
  • Водонагреватели
    • Водонагреватели
    • Газовые
    • Электрические
    • Косвенного нагрева
  • Горелки
    • Горелки
    • Газовые
    • Дизельные
    • Комбинированные мультитопливные
    • Мазутные
    • На отработанном масле
    • Нефтяные
    • Пеллетные
    • Рампы и комплектующие
  • Инфракрасные обогреватели
  • Калориферы
    • Калориферы
    • Отопительные
    • Дестратификаторы
    • Канальные
  • Конвекторы
    • Конвекторы
    • Встраиваемые внутрипольные
    • Газовые
    • Напольные
    • Электрические
  • Котлы отопления
    • Котлы отопления
    • Газовые
    • Газовые/ дизельные под сменную горелку
    • Дизельные
    • На отработанном масле
    • Паровые
    • Пеллетные
    • Промышленные водогрейные
    • Твердотопливные
    • Термомасляные
    • Электрические
  • Насосы
    • Насосы
    • Дренажные
    • Насосные станции
    • Поверхностные
    • Погружные
    • Фекальные
    • Циркуляционные
    • Автоматика для систем водоснабжения
  • Осушители воздуха
    • Осушители воздуха
    • Адсорбционные
    • Бытовые
    • Для бассейна
    • Канальные
    • Промышленные
  • Тепловые завесы
  • Тепловые пушки
    • Тепловые пушки
    • Газовые
    • Дизельные
    • На горячей воде
    • Электрические
  • Теплогенераторы
    • Теплогенераторы
    • Газовые канальные воздухонагреватели
    • Газовые воздухонагреватели
  • Еще
    • Автоматика
    • Дымоходы
      • Дымоходы
      • Arderia
      • Baxi
      • Bosch
      • Buderus
      • Craft
      • Daewoo
      • Ferroli
      • Hydrosta
      • Kiturami
      • Navien
      • Protherm
      • Еще...
    • Запчасти и комплектующие
      • Запчасти и комплектующие
      • Насосы топливные
      • Блоки управления
      • Комплектующие для калориферов
      • Комплектующие для кондиционеров
      • Комплектующие для тепловых завес
      • Комплектующие к инфракрасным обогревателям
      • Комплектующие радиаторов
      • Форсунки
      • Комплектующие для конвекторов
      • Запчасти
      • Комплектующие вентиляционных систем
    • Комплектующие отопительных систем
      • Комплектующие отопительных систем

Норматив отопления на 1 кв м: значение, нормальная температура, расчеты

Содержание статьи:

Регламенты потребления энергии на отопление планируются с учетом климата, вида жилого строения. Принимается во внимание материал ограждающих конструкций, этажность дома и степень износа теплотрассы. Поэтому норматив отопления на 1 кв. м будет отличаться в разных городах и регионах. Нормы вводятся уполномоченным органом местного совета на основе расчета снабжающей организации и являются постоянной величиной на протяжении трех лет.

Значение норматива отопления и расчеты на 1 кв. м

Норматив отопления зависит от состояния и конструкции здания и климатической зоны

Регламенты теплопотребления рассчитываются в соответствии с условиями качественного оказания услуг, которые прописаны в законодательстве РФ. Нормы изменяются в предусмотренном правовом порядке.

Случаи для реформирования:

  • реорганизация технического оснащения и конструктива многоквартирного дома, изменение климата, при котором потребление ресурсов в жилом доме меняется на 5% и больше;
  • видоизменение существующих правил в отношении состава нормативов теплопотребления, способов и условий расчета показателей расходов и затрат.

Компания, которая подает тепло в район, представляет в органы местной власти расчетные документы с веским обоснованием новых норм. Уполномоченные службы анализируют материалы и делают дополнительные запросы, если нужно.

Городской совет проводит заседание, на котором обсуждает, принимает или отказывает организации в повышении показателей. На основании постановления делается перерасчет, вводятся измененные тарифы для потребителей.

Решение органов в течение 10 суток публикуется в местных информационных средствах, указывается дата, когда начинает действовать новый норматив потребления тепловой энергии.

Комфортная температура помещения

Показатели комфортной температуры регламентируются государством. В России нормы прописываются для всех регионов.

Нормативы температурных параметров содержатся в документе ГОСТ 30.494 – 2011 и включают показатели в зависимости от типа помещения:

  • в комнатах комфортной считается температура на уровне +20 – +22°С;
  • в кухне — +19 – +21°С;
  • в ванной — +24 – +26°С;
  • в туалете — +19 – +21°С;
  • в прихожей — +18 – +20°С.

Если температура не достигает этих величин, норма отопления на 1 м2 дома не выполняется, можно пожаловаться и потребовать перерасчет потребленной энергии.

Нормы учитывают предназначение помещений. Спальня должна быть проветрена, после этого в ней должна быть нормативная температура. В детской нормальной считается температура верхней границы, а по мере взросления ребенка переходит к нижней планке. В ванной повышенная норма обусловлена сыростью, из-за которой ощущается промозглость.

Расчет платы за тепло с учетом нормативов

Калория используется в расчетах теплопотребления жилых домов и многоквартирного сектора. Единица равна 4,1868 Дж. Этого количества хватает, чтобы подогреть один грамм воды на 1°С. Для получения 1 куб. м горячей воды с температурой +60°С (нижний показатель энергоносителя в теплотрассе) требуется 60 Мкал. Для подогрева 100 м3 жидкости нужно уже 6 Гкал.

Многоквартирные строения рассматриваются в качестве неделимых объектов, которые потребляют энергию для обогрева помещений в их составе. Правилами нормативов на отопление 1 кв. м предусматривается расчет тепловой энергии на весь дом в течение года, на основании которого получается усредненное значение.

Многоквартирное строение включает нежилые и жилые помещения и пространства общего пользования (подвалы, чердаки, лестничные клетки) и оплата распределяется на собственников квартир. Размер определяется пропорционально площади помещений отдельных владельцев.

Для учета объема тепла, которое смогли потребить пользователи дома, применяются общегородские нормы отопления на 1 квадратный метр. В 2019 году правительство установило новые нормы учета потребления тепла на нагрев подсобных помещений, в квитанции появилась строка «общедомовые нужды».

Расчет своей платы за отопление

Для экономии потребители ставят отдельные счетчики в квартирах, позволяющие измерять объем потребленной энергии без усредненного расчета по нормам. Приборы ставятся специалистами и пломбируются перед использованием.

Цифра в платежном документе зависит от способа подсчета:

  • по показаниям квартирного учетного прибора с добавлением доли потребления теплоэнергии на обогрев общих мест пользования;
  • исходя из рассчитанной доли на отдельную квартиру по цифрам общедомового теплосчетчика;
  • по расчету с применением местных нормативов, если нет общего и индивидуального прибора.

По закону плата считается только на период фактического отопления или раскидывается на весь год. Вариант выбирает районная или городская власть. Во второй версии применяется дополнительный коэффициент на поправку. В домах с общими счетчиками, жильцы которых платят весь год, за летние месяцы делается перерасчет.

С общедомовым прибором учета

Если в многоэтажке есть прибор учета, а отдельные квартиры остались без них, делается подсчет Гкал на обогрев собственной площади и прибавляются затраты тепла на отопление общего пространства. В расчет принимаются значения прибора, площадь дома и квадратура квартиры.

Показания коллективного счетчика подаются в управляющую контору, и они указываются в следующей квитанции. Информацию об общей квадратуре дома можно найти в ЖКХ в документах о приемке. Площадь квартиры прописана в техническом паспорте, а о тарифах можно узнать в теплосети.

Расчет потребления проводится по формуле: P = V x S / S1 x T, где:

  • V – количество использованной энергии по контрольному прибору.
  • S – квадратура собственной квартиры.
  • S1 – площадь нежилых и жилых помещений строения.
  • T – законный тариф на теплоэнергию.

Общий объем использованного тепла в доме делится на квадратные метры жилья. Получается доля на отдельную квартиру, это значение умножается на тариф теплосети.

Нет ни общедомового прибора, ни индивидуальных счетчиков

В этом случае используется текущий норматив потребления тепла на 1 кв. м. Регламентируемый показатель определяет объем тепла для нагрева квадрата жилья за месяц. Климат в регионах РФ отличается, поэтому местные власти устанавливают разные квоты в субъектах Федерации. Имеет значение тип жилья и состояние коммуникаций в строении.

Затраты рассчитываются по формуле: P = S x N x T, где:

  • S – площадь квартиры или нежилого помещения.
  • N – норма потребления.
  • T – тариф на тепло.

Площадь жилья умножается на действующую норму, определяется расчетное количество тепла, необходимое для обогрева. Такие подсчеты иногда не соответствуют фактическим затратам энергии. Правительство обязывает жильцов устанавливать общие счетчики в многоквартирных домах.

Есть прибор учета и счетчики

Установка прибора учета в квартире дает возможность владельцу оплачивать тепло, фактически подаваемое в жилье. Правилами предусматривается обязательное принятие показаний индивидуальных приборов коммунальщиками, если в доме есть коллективный счетчик, и не менее 50% личных помещений (по площади) оборудованы отдельными приборами.

Плата, которую заплатили индивидуальные владельцы, суммируется. Рассчитывается часть каждого в соответствии с показаниями приборов. Рассчитывается доля потребления среди помещений, оборудованных счетчиками. Полученное значение умножается на выделенную сумму платы за Гкал для квартир с индивидуальным учетом и выводится платеж за тепло в месячный период.

Сумма платежа может быть меньше или больше той, что уже оплачена. От этого зависит начисление дополнительной платы в следующем периоде или перерасчет на меньший взнос.

Целевые Показатели Программы Энергосбережения

№ п/п

Наименование вида деятельности/ целевого показателя

Единица

измерения

1.

Производство тепловой энергии

1.1.

Снижение расхода тепловой энергии на собственные нужды

Гкал, %

1.2.

Снижение удельного расхода условного топлива на выработку тепловой энергии

кг.у.т./Гкал, %

1.3.

Снижение удельного расхода условного топлива на отпуск тепловой энергии с коллекторов

кг.у.т./Гкал, %

1.4.

Снижение удельного расхода электрической энергии на отпуск тепловой энергии с коллекторов

кВт.ч/Гкал, %

1.5.

Снижение расхода воды на отпуск тепловой энергии с коллекторов

куб. м/Гкал, %

1.6.

Увеличение доли отпуска тепловой энергии потребителям по приборам учета

%

1.7.

Оснащенность зданий, строений, сооружений, находящихся в собственности компании и/или на другом законном основании, приборами учета используемых энергоресурсов: воды, природного газа, тепловой энергии, электрической энергии

%

1.8.

Сокращение удельного расхода электрической энергии в зданиях, строениях, сооружениях, находящихся в собственности компании и/или на другом законном основании

кВт.ч/кв. м, %

1.9.

Сокращение удельного расхода тепловой энергии в зданиях, строениях, сооружениях, находящихся в собственности компании и/или на другом законном основании

Гкал/куб. м, %

1.10.

Сокращение удельного расхода горюче-смазочных материалов, используемых компанией при оказании услуг по передаче электрической энергии (мощности)

т.у.т./км, %

2.

Услуги по передаче тепловой энергии

2.1.

Снижение потерь тепловой энергии в тепловых сетях (обследование)

Гкал, %

2.2.

Снижение удельного расхода электрической энергии на отпуск тепловой энергии в сеть

кВт.ч/Гкал, %

2.3.

Увеличение доли отпуска тепловой энергии потребителям по приборам учета

%

2.4.

Оснащенность зданий, строений, сооружений, находящихся в собственности компании и/или на другом законном основании, приборами учета используемых энергоресурсов: воды, природного газа, тепловой энергии, электрической энергии

%

2.5.

Сокращение удельного расхода электрической энергии в зданиях, строениях, сооружениях, находящихся в собственности компании и/или на другом законном основании

кВт.ч/кв. м, %

2.6.

Сокращение удельного расхода тепловой энергии в зданиях, строениях, сооружениях, находящихся в собственности компании и/или на другом законном основании

Гкал/куб. м, %

2.7.

Сокращение удельного расхода горюче-смазочных материалов, используемых компанией при оказании услуг по передаче электрической энергии (мощности)

т.у.т./км, %

3.

Производство и передача тепловой энергии

3.1.

Снижение потерь тепловой энергии в тепловых сетях

Гкал, %

3.2.

Снижение расхода тепловой энергии на собственные нужды

Гкал, %

3.3.

Снижение удельного расхода условного топлива на выработку тепловой энергии

кг.у.т./Гкал, %

3.4.

Снижение удельного расхода условного топлива на отпуск тепловой энергии с коллекторов

кг.у.т./Гкал, %

3.5.

Снижение удельного расхода электрической энергии на отпуск тепловой энергии с коллекторов

кВт.ч/Гкал, %

3.6.

Снижение удельного расхода воды на отпуск тепловой энергии с коллекторов

куб. м/Гкал, %

3.7.

Увеличение доли отпуска тепловой энергии потребителям по приборам учета

%

3.8.

Оснащенность зданий, строений, сооружений, находящихся в собственности компании и/или на другом законном основании, приборами учета используемых энергоресурсов: воды, природного газа, тепловой энергии, электрической энергии

%

3.9.

Сокращение удельного расхода электрической энергии в зданиях, строениях, сооружениях, находящихся в собственности компании и/или на другом законном основании

кВт.ч/кв. м, %

3.10.

Сокращение удельного расхода тепловой энергии в зданиях, строениях, сооружениях, находящихся в собственности компании и/или на другом законном основании

Гкал/куб. м, %

3.11.

Сокращение удельного расхода горюче-смазочных материалов, используемых компанией при оказании услуг по передаче электрической энергии (мощности)

т.у.т./км, %

4.

Производство электрической и тепловой энергии

в режиме комбинированной выработки

4.1.

Снижение расхода электроэнергии на собственные нужды

кВт.ч, %

4.2.

Снижение потерь электрической энергии в электрической сети

кВт.ч, %

4.3.

Снижение расхода тепловой энергии на собственные нужды

Гкал, %

4.4.

Снижение удельного расхода условного топлива на отпуск электрической энергии с шин

г.у.т./Гкал, %

4.5.

Снижение удельного расхода условного топлива на отпуск тепловой энергии с коллекторов

кг.у.т./Гкал, %

4.6.

Снижение расхода воды на отпуск тепловой энергии с коллекторов

куб. м, %

4.7.

Снижение расхода воды на отпуск электрической энергии с шин

куб. м, %

4.8.

Снижение удельного расхода воды на отпуск электроэнергии с шин

куб. м/кВт.ч, %

4.9.

Снижение удельного расхода воды на отпуск тепловой энергии с коллекторов

куб. м/Гкал, %

4.10.

Увеличение доли отпуска электрической энергии потребителям по приборам учета

%

4.11.

Увеличение доли отпуска тепловой энергии потребителям по приборам учета

%

4.12.

Оснащенность зданий, строений, сооружений, находящихся в собственности компании и/или на другом законном основании, приборами учета используемых энергоресурсов: воды, природного газа, тепловой энергии, электрической энергии

%

4.13.

Сокращение удельного расхода электрической энергии в зданиях, строениях, сооружениях, находящихся в собственности компании и/или на другом законном основании

кВт.ч/кв. м, %

4.14.

Сокращение удельного расхода тепловой энергии в зданиях, строениях, сооружениях, находящихся в собственности компании и/или на другом законном основании

Гкал/куб. м, %

4.15.

Сокращение удельного расхода горюче-смазочных материалов, используемых компанией при оказании услуг по передаче электрической энергии (мощности)

т.у.т./км, %

5.

Услуги по передаче электрической энергии

5.1.

Снижение потерь электрической энергии в сетях

кВт.ч, %

5.2.

Снижение расхода электрической энергии на собственные нужды

кВт.ч, %

5.3.

Увеличение доли услуг по передаче электрической энергии (мощности) по приборам учета

%

5.4.

Оснащенность зданий, строений, сооружений, находящихся в собственности компании и/или на другом законном основании, приборами учета используемых энергоресурсов: воды, природного газа, тепловой энергии, электрической энергии

%

5.5.

Сокращение удельного расхода электрической энергии в зданиях, строениях, сооружениях, находящихся в собственности компании и/или на другом законном основании

кВт.ч/кв. м, %

5.6.

Сокращение удельного расхода тепловой энергии в зданиях, строениях, сооружениях, находящихся в собственности компании и/или на другом законном основании

Гкал/куб. м, %

5.7.

Сокращение удельного расхода горюче-смазочных материалов, используемых компанией при оказании услуг по передаче электрической энергии (мощности)

т.у.т./км, %

6.

Услуги по холодному водоснабжению

6.1.

Снижение потерь воды в водопроводных сетях

куб. м, %

6.2.

Снижение расхода электрической энергии на собственные нужды

кВт.ч, %

6.3.

Снижение удельного расхода электрической энергии на холодное водоснабжение

кВт.ч/куб. м, %

6.4.

Увеличение доли отпуска воды потребителям по приборам учета

%

6.5.

Оснащенность зданий, строений, сооружений, находящихся в собственности компании и/или на другом законном основании, приборами учета используемых энергоресурсов: воды, природного газа, тепловой энергии, электрической энергии

%

6.6.

Сокращение удельного расхода электрической энергии в зданиях, строениях, сооружениях, находящихся в собственности компании и/или на другом законном основании

кВт.ч/кв. м, %

6.7.

Сокращение удельного расхода тепловой энергии в зданиях, строениях, сооружениях, находящихся в собственности компании и/или на другом законном основании

Гкал/куб. м, %

6.8.

Сокращение удельного расхода горюче-смазочных материалов, используемых компанией при оказании услуг по холодному водоснабжению

т.у.т./км, %

7.

Услуги по водоотведению

7.1.

Снижение расхода электрической энергии на собственные нужды

кВт.ч, %

7.2.

Снижение удельного расхода электрической энергии на водоотведение

кВт.ч/куб. м, %

7.3.

Оснащенность зданий, строений, сооружений, находящихся в собственности компании и/или на другом законном основании, приборами учета используемых энергоресурсов: воды, природного газа, тепловой энергии, электрической энергии

%

7.4.

Сокращение удельного расхода электрической энергии в зданиях, строениях, сооружениях, находящихся в собственности компании и/или на другом законном основании

кВт.ч/кв. м, %

7.5.

Сокращение удельного расхода тепловой энергии в зданиях, строениях, сооружениях, находящихся в собственности компании и/или на другом законном основании

Гкал/куб. м, %

7.6.

Сокращение удельного расхода горюче-смазочных материалов, используемых компанией при оказании услуг по водоотведению

т.у.т./км, %

8.

Горячее водоснабжение

8.1.

Снижение расхода электрической энергии на собственные нужды

кВт.ч, %

8.2.

Снижение удельного расхода электрической энергии на горячее водоснабжение

кВт.ч/куб. м, %

8.3.

Оснащенность зданий, строений, сооружений, находящихся в собственности компании и/или на другом законном основании, приборами учета используемых энергоресурсов: воды, природного газа, тепловой энергии, электрической энергии

%

8.4.

Сокращение удельного расхода электрической энергии в зданиях, строениях, сооружениях, находящихся в собственности компании и/или на другом законном основании

кВт.ч/кв. м, %

8.5.

Сокращение удельного расхода тепловой энергии в зданиях, строениях, сооружениях, находящихся в собственности компании и/или на другом законном основании

Гкал/куб. м, %

8.6.

Сокращение удельного расхода горюче-смазочных материалов, используемых компанией при оказании услуг по горячему водоснабжению

т.у.т./км, %

9.

Обращение с твердыми коммунальными отходами

9.1.

Снижение расхода электрической энергии на собственные нужды

кВт.ч, %

9.2.

Оснащенность зданий, строений, сооружений, находящихся в собственности компании и/или на другом законном основании, приборами учета используемых энергоресурсов: воды, природного газа, тепловой энергии, электрической энергии

%

9.3.

Сокращение удельного расхода электрической энергии в зданиях, строениях, сооружениях, находящихся в собственности компании и/или на другом законном основании

кВт.ч/кв. м, %

9.4.

Сокращение удельного расхода тепловой энергии в зданиях, строениях, сооружениях, находящихся в собственности компании и/или на другом законном основании

Гкал/куб. м, %

9.5.

Сокращение удельного расхода горюче-смазочных материалов, используемых компанией при оказании услуг по утилизации твердых коммунальных отходов

т.у.т./км, %

Энергопотребление в домашних хозяйствах - SSB

Персональное собеседование с использованием компьютера (CAPI) и подробный учет за период 14 дней. Данные с электростанций собираются в анкетах по почте или в электронном виде в таблицах Excel. Проведено обследование потребительских расходов. выходит один раз в год, а вопросник по энергетическому и тепловому оборудованию добавляется только при отдельном обследовании энергопотребления. для хоз.Мы не измеряли, сколько времени нужно, чтобы ответить на дополнительные вопросы об энергии или как Электростанциям требуется много времени, чтобы заполнить данные о продажах (в кВтч) электроэнергии домохозяйствам. Бремя ответа для отдельных электростанций зависит от того, по скольким домохозяйствам они должны предоставить информацию. В общем, ноша становится больше для крупных электростанций с большим количеством абонентов.

Пересмотр и контроль данных дополнительного вопросника по энергии осуществляется в программах обработки данных.Данные обработка и расчеты выполняются в SAS, программном обеспечении, специально разработанном для подготовки статистики. Программное обеспечение содержит некоторые автоматические элементы управления, которые показывают крайние цифры. Некоторые очевидные ошибки исправляются в программе автоматически, а другие требуют особого лечения. Если энергетических данных для конкретного домохозяйства недостаточно для расчета энергии потребления домохозяйство исключается из расчетов энергии.

См. Также «О статистике» для обзора потребительских расходов: http://www.ssb.no/english/subjects/05/02/fbu_en/

В 2004 году 92 процента респондентов дали Статистическому управлению Норвегии разрешение на сбор данных об их потреблении электроэнергии. от электростанции. Для обзора 2004 года Статистическое управление Норвегии получило данные о потреблении электроэнергии от поставщика сети, а информация о типе контракта на электроэнергию собирается у поставщика электроэнергии.Информация об электричестве Тип контракта собирается только для исследовательских целей, например, эластичность цены на электроэнергию. Данные от электричества растения собираются в соответствии с Законом о статистике, и поэтому процент отклика очень высок. Однако в некоторых случаях электричество Завод не может найти домохозяйство в своем реестре, например, из-за неправильного имени абонента или вопросов отправляются на неправильную электростанцию.В результате мы не получаем данные по всем домохозяйствам, которые предоставили StatistiCS Разрешение Норвегии на сбор данных со своего завода.

В 2004 году потребление электроэнергии основано на информации от электростанций, охватывающих 90 процентов домашних хозяйств. в образце. Однако по разным причинам некоторые из заводов обеспечивали потребление только в определенные периоды года, в течение экземпляр за десять месяцев.В таких случаях потребление преобразуется в годовое потребление на основе профиля, который показывает процентное распределение среднего потребления электроэнергии по месяцам. В 81% домохозяйств электричество Обеспеченное заводом потребление покрыло весь год (за 2004 год).

На 2006 год около 90 процентов домашних хозяйств дали Статистическому управлению Норвегии разрешение на сбор электроэнергии. от их электростанции.Мы получили данные от электростанции по большинству этих домохозяйств. Однако и для 2006 г., нам пришлось внести некоторые корректировки в эти данные в тех случаях, когда завод предоставил данные за другой период, чем календарный. 2006 год. В случаях, когда данные по электростанции полностью отсутствовали, расходы на электроэнергию, сообщаемые домохозяйствами, используются как источник потребления электроэнергии

В 2009 году 1000 домашних хозяйств, что составляет 88 процентов домашних хозяйств, разрешили Статистическому управлению Норвегии собирать электроэнергию. потребление от их электростанции.Для остальных домохозяйств, а также для тех, где мы по другим причинам не получили информации от электростанции, мы использовали данные о расходах домашних хозяйств на электроэнергию, если будь благоразумен.

Обзор потребительских расходов содержит информацию о расходах домашних хозяйств и спросе (в тоннах или 3 ) на топливную древесину, мазут и керосин за последние 12 месяцев для жилищ и коттеджей / дач.Мы спрашиваем только о расходы на электроэнергию, а не количество в кВтч. Для домохозяйств, где данные о потреблении электроэнергии от электростанции отсутствуют, потребление электроэнергии рассчитывается на основе расходов домохозяйств на электроэнергию за последние 12 месяцев. В собственная отчетность о расходах домохозяйства менее надежна, чем данные с электростанции. В тех случаях, когда эта цифра кажется неверно и другая информация о потреблении энергии домохозяйством отсутствует, домохозяйство исключено из расчеты энергии.Поскольку опросы домашних хозяйств проводятся в течение года, потребление относится к частям. двух календарных лет (частично 2008 г. и частично 2009 г. для исследования 2009 г.). Это также относится к потреблению дров, нефти и керосина, которые рассчитываются на основе закупок в физических или денежных единицах этим источникам энергии последними 12 месяцев.

В случаях, когда потребление рассчитывается на основе расходов, расходы делятся на среднюю цену на энергию. источник за соответствующий период (средняя цена за 2008-2009 гг. по обзору 2009 г.).

При обследовании потребительских расходов собираются данные о расходах на источники энергии для жилых домов и коттеджей / дач. собрались. Потребление в коттеджах / дачных домиках собирается в дополнительной анкете по энергии и затем вычитается. от потребления энергии, поскольку обследование включает потребление энергии только в постоянных домах.

Статистика комбинаций отопительного оборудования рассчитывается на основе информации, собранной в дополнительном анкета по энергетике.Для некоторых домохозяйств информация о потреблении энергии и отопительном оборудовании не соответствует друг другу. Например, некоторые домохозяйства сообщают о потреблении дров, но не дровяной печи. В таких случаях мы предположили что домохозяйства забыли сообщить обо всех типах отопительного оборудования и поэтому исправили отопительное оборудование соответственно.

.

Общий коэффициент теплопередачи

Теплопередача через поверхность, например стену, может быть рассчитана как

q = UA dT (1)

где

q = теплопередача (Вт (Дж / с), БТЕ / ч)

U = общий коэффициент теплопередачи (Вт / (м 2 K), БТЕ / (фут 2 ч o F) )

A = площадь стены (м 2 , фут 2 )

dT = (t 1 - t 2 )

= разница температур по стене ( o C, o F)

Общий коэффициент теплопередачи для многослойной стены, трубы или теплообменника - с потоком жидкости с каждой стороны стены - можно рассчитать как

1 / UA = 1 / ч ci A i + Σ (s 9004 5 n / k n A n ) + 1 / h co A o (2)

где

U = общий коэффициент теплопередачи (Вт / (м 2 K), БТЕ / (фут 2 ч o F) )

k n = теплопроводность материала в слое n (Вт / (м · K), БТЕ / (час · фут · ° F) )

h ci, o = внутренняя или внешняя стенка индивидуальная жидкость конвекция коэффициент теплопередачи (Вт / (м 2 K), Btu / (фут 2 h o F) )

s n = толщина слоя n ( м, футы)

9 0002 Плоская стена с равной площадью во всех слоях - можно упростить до

1 / U = 1 / h ci + Σ (s n / k n ) + 1 / h co (3)

Теплопроводность - k - для некоторых типичных материалов (проводимость не зависит от температуры)

  • Полипропилен PP: 0.1 - 0,22 Вт / (м · К)
  • Нержавеющая сталь: 16 - 24 Вт / (м · К)
  • Алюминий: 205 - 250 Вт / (м · К)
Преобразовать между Метрические и британские единицы
  • 1 Вт / (м · К) = 0,5779 БТЕ / (фут · ч o F)
  • 1 Вт / (м 2 K) = 0,85984 ккал / (hm 2 o C) = 0,1761 Btu / (ft 2 h o F)

Коэффициент конвективной теплопередачи - h - зависит от

  • тип жидкости - газ или жидкость
  • свойства потока, такие как скорость
  • другие свойства, зависящие от потока и температуры

Коэффициент конвективной теплопередачи для некоторых распространенных жидкостей:

  • Воздух - от 10 до 100 Вт / м 2 K
  • Вода - 500 до 10 000 Вт / м 2 K

Многослойные стены - Калькулятор теплопередачи

Этот калькулятор можно использовать для расчета общего коэффициента теплопередачи и теплопередачи через многослойную стену.Калькулятор является универсальным и может использоваться для метрических или британских единиц при условии, что единицы используются последовательно.

A - площадь (м 2 , футы 2 )

t 1 - температура 1 ( o C, o F)

t 2 - температура 2 ( o C, o F)

h ci - коэффициент конвективной теплоотдачи внутри стенки (Вт / (м 2 K), БТЕ / ( футов 2 ч o F) )

с 1 - толщина 1 (м, фут) k 1 - теплопроводность 1 (Вт / (м K) , БТЕ / (час · фут · ° F) )

с 2 - толщина 2 (м, фут) k 2 - теплопроводность 2 (Вт / (м · К), Британские тепловые единицы / (час фут ° F) )

с 3 - толщина 3 (м, фут) k 3 - теплопроводность 3 (Вт / (м · K), БТЕ / (ч · фут · ° F) )

h co - коэффициент конвективной теплопередачи снаружи стены ( Вт / (м 2 K), Btu / (фут 2 h o F) )

Тепловое сопротивление теплопередачи

Сопротивление теплопередачи банка быть выражено как

R = 1 / U (4)

где

R = сопротивление теплопередаче (м 2 K / Вт, футов 2 h ° F / BTU)

Стена разделена на участки термического сопротивления, где

  • теплопередача между жидкостью и стеной - это одно сопротивление
  • сама стена является одним сопротивлением
  • передача между стеной и t Вторая жидкость - это тепловое сопротивление.

Поверхностные покрытия или слои «обожженного» продукта добавляют дополнительное тепловое сопротивление стенкам, снижая общий коэффициент теплопередачи.

Некоторые типичные сопротивления теплопередаче
  • статический слой воздуха, 40 мм (1,57 дюйма) : R = 0,18 м 2 K / Вт
  • внутреннее сопротивление теплопередаче, горизонтальный ток: R = 0,13 м 2 K / W
  • внешнее сопротивление теплопередаче, горизонтальный ток: R = 0,04 м 2 K / W
  • внутреннее сопротивление теплопередаче, тепловой ток снизу вверх: R = 0,10 м 2 K / W
  • внешнее сопротивление теплопередаче, тепловой ток сверху вниз: R = 0.17 м 2 K / W

Пример - передача тепла в теплообменнике воздух-воздух

Пластинчатый теплообменник воздух-воздух площадью 2 м 2 и толщиной стенки 0,1 мм может быть изготовлен из полипропилен PP, алюминий или нержавеющая сталь.

Коэффициент конвекции тепла для воздуха составляет 50 Вт / м 2 K . Внутренняя температура теплообменника составляет 100 o C , а наружная температура составляет 20 o C .

Общий коэффициент теплопередачи U на единицу площади можно рассчитать, изменив (3) на

U = 1 / (1 / h ci + s / k + 1 / h co ) (3b)

Общий коэффициент теплопередачи для теплообменника из полипропилена

  • с теплопроводностью 0,1 Вт / м · К составляет

U PP = 1 / (1 / ( 50 Вт / м 2 K ) + ( 0.1 мм ) (10 -3 м / мм) / ( 0,1 Вт / мK ) + 1/ ( 50 Вт / м 2 K ) )

= 24,4 Вт / м 2 K

Теплопередача

q = ( 24,4 Вт / м 2 K ) ( 2 м 2 ) (( 100 o C ) - (2 0 o C ))

= 3904 W

= 3.9 кВт

  • нержавеющая сталь с теплопроводностью 16 Вт / м · К :

U SS = 1 / (1 / ( 50 Вт / м 2 K ) + ( 0,1 мм ) (10 -3 м / мм) / ( 16 Вт / мK ) + 1/ ( 50 Вт / м 2 K ) )

= 25 Вт / м 2 K

Теплопередача

q = ( 25 Вт / м 2 K ) ( 2 м 2 ) (( 100 o C ) - (2 0 o C ))

= 4000 Вт

= 4 кВт

  • алюминий с теплопроводностью 205 Вт / мK :

U Al = 1 / (1 / ( 50 Вт / м 2 K 90 077) + ( 0.1 мм ) (10 -3 м / мм) / (205 Вт / мK ) + 1/ ( 50 Вт / м 2 K ) )

= 25 Вт / м 2 K

Теплопередача

q = ( 25 Вт / м 2 K ) ( 2 м 2 ) (( 100 o C ) - (2 0 o C ))

= 4000 Вт

= 4 кВт

  • 1 Вт / (м 2 К) = 0.85984 ккал / (hm 2 o C) = 0,1761 Btu / (ft 2 h o F)

Типичный общий коэффициент теплопередачи

  • Газ свободной конвекции - газ свободной конвекции: U = 1-2 Вт / м 2 K (типичное окно, воздух из помещения через стекло)
  • Газ без конвекции - принудительная жидкая (проточная) вода: U = 5-15 Вт / м 2 K (типовые радиаторы центрального отопления)
  • Свободная конвекция газа - конденсирующийся пар Вода: U = 5-20 Вт / м 2 K (типичные паровые радиаторы)
  • Принудительная конвекция (проточная) Газ - Свободная конвекция газ: U = 3-10 Вт / м 2 K (пароперегреватели)
  • Принудительная конвекция (проточный) Газ - Принудительная конвекция Газ: U = 10-30 Вт / м 2 K (газы теплообменника)
  • Принудительная конвекция (проточный) газ - Принудительная жидкая (проточная) вода: U = 10-50 Вт / м 2 9 0022 K (газовые охладители)
  • Принудительная конвекция (проточный) Газ - конденсирующийся пар Вода: U = 10-50 Вт / м 2 K (воздухонагреватели)
  • Безжидкостная конвекция - принудительная конвекция Газ: U = 10-50 Вт / м 2 K (газовый котел)
  • Жидкостная конвекция - свободная конвекция Жидкость: U = 25-500 Вт / м 2 K (масляная баня для отопления)
  • Без жидкости Конвекция - принудительный ток жидкости (вода): U = 50 - 100 Вт / м 2 K (нагревательный змеевик в воде в резервуаре, вода без рулевого управления), 500-2000 Вт / м 2 K (нагревательный змеевик в резервуаре для воды) , вода с рулевым управлением)
  • Конвекция без жидкости - Конденсирующийся пар воды: U = 300 - 1000 Вт / м 2 K (паровые рубашки вокруг сосудов с мешалками, вода), 150 - 500 Вт / м 2 K (другие жидкости)
  • Принудительная жидкость (текущая) вода - газ свободной конвекции: U = 10-40 Вт / м 2 K (горючий камера + излучение)
  • Принудительная жидкость (текущая) вода - Свободная конвекционная жидкость: U = 500 - 1500 Вт / м 2 K (охлаждающий змеевик - перемешиваемый)
  • Принудительная жидкость (текущая) вода - Принудительная жидкость (проточная вода): U = 900 - 2500 Вт / м 2 K (теплообменник вода / вода)
  • Принудительная жидкая (проточная) вода - Конденсирующий пар водяной: U = 1000 - 4000 Вт / м 2 K (конденсаторы паровая вода)
  • Кипящая жидкая вода - свободная конвекция, газ: U = 10-40 Вт / м 2 K (паровой котел + излучение)
  • Кипящая жидкая вода - принудительное течение жидкости (вода) : U = 300 - 1000 Вт / м 2 K (испарение холодильников или охладителей рассола)
  • Кипящая жидкая вода - Конденсирующий пар воды: U = 1500 - 6000 Вт / м 2 K (испарители пар / вода)
.

Цокольный этаж. Расход на 1 м2 наливного пола: практические расчеты

Современный рынок отделочных и строительных материалов предлагает широкий выбор различных напольных покрытий. Благодаря разнообразию материалов и их свойств можно выполнять любые дизайнерские проекты. Один из самых популярных видов покрытий - наливной пол, устройство которого осуществляется сухим гипсокартоном или цементными смесями.

Это пластмассовые быстросхватывающиеся материалы. Благодаря особой структуре под действием собственного веса они растекаются, заполняют неровности оснований, образуя идеальную плоскость.

Преимущества наливных полов

Покрытие, определяемое как наливной пол, имеет ряд преимуществ:

  • гладкая и ровная поверхность;
  • быстрое схватывание;
  • прочность и долговечность;
  • устойчивость к перепадам температур;
  • простота обслуживания.

Виды покрытия

Пол представляет собой самовыравнивающуюся смесь, которая очень легко растекается по всей площади помещения, образуя гладкую и ровную поверхность.Эти покрытия делятся на два типа: полимерные и минеральные.

Полимерные самовыравнивающиеся смеси делятся на несколько видов.

  1. Полиуретан . Эластичные покрытия, устойчивые к ударам, выдерживают большие нагрузки и используются в неотапливаемых помещениях.
  2. Метилметакрилат . Такие полы требуют строгого соблюдения технологии при укладке, устойчивы к механическим воздействиям, имеют резкий запах. Их используют в хорошо вентилируемых помещениях.
  3. Эпоксидно-уретановый. Такие полы обладают эластичностью, стойкостью к истиранию, химическим реагентам. Используется в гаражах, пандусах.
  4. Эпоксидный . Это твердое, твердое, ударопрочное покрытие. Выдерживает высокие температуры и механические нагрузки, легко чистится. Заливают такие полы в закрытых помещениях.

Минеральные покрытия - это самовыравнивающиеся смеси на основе цемента с модификаторами и минеральными наполнителями. Используйте этот раствор при нанесении финишного покрытия.

Методы классификации

Полимерные полы классифицируются по следующим показателям:

  • степень наполнения;
  • вид растворителя;
  • толщина.

По толщине наливные полы делятся на следующие типы:

  1. Тонкослойные покрытия. Их толщина 0,2-0,6 мм. Не выдерживают очень высоких нагрузок. Установите валик или распылитель.
  2. Средняя толщина. Наносимый слой может составлять 0,8-1,5 мм. Эти самовыравнивающиеся покрытия выдерживают средние нагрузки.
  3. Высоконаполненные покрытия. Их толщина 2 мм и более. Внешний вид зависит от характеристик наполнителя.Используются в декоративных и специализированных целях.

В зависимости от степени наполнения материал характеризуется следующим образом: чем больше наполнителя, тем шероховатее будет поверхность.

Растворитель бывает:

  • водно-дисперсионный - покрытие без запаха, его можно наносить на влажный бетон, так как его основа - вода.
  • Смолы без растворителя - пол отличается низкой вязкостью, иногда имеет слабый запах, удобен в укладке.

Расход материала на 1м 2

Для устранения дефектов оснований пола, улучшения звуко- или теплоизоляции необходимо выполнить целый комплекс работ по заливке стяжек или наливных полов. Для этого нужно узнать, сколько уйдет готовая смесь без учета примесей. Если сделать наливной пол, расход на 1 м2 в среднем составит 1 литр. Это значение различается в зависимости от производителя. Для получения более точных расчетов необходимо площадь покрытия умножить на плотность материала и толщину слоя.Рассмотрим несколько популярных смесей и их расчеты.

Для планировки и выравнивания кирпичных, бетонных и каменных полов подойдет цементно-песчаная стяжка, которую укладывают поверх основания. Раствор применяется во всех типах помещений в качестве гидроизоляционного защитного слоя. На него нельзя воздействовать натуральными маслами, водой, растворителями, щелочами. Расход наливного пола на 1 м2 стяжки составляет 2 кг при толщине слоя 1 мм.

Пол быстротвердеющий «Старатели» Применяется для выравнивания неровностей от 0.От 5 до 8 см. Это покрытие обладает комплексом защитных свойств от преждевременного износа и воздействия агрессивных веществ. Качественная начинка выдерживает нагрузки более 70 кг. На нем нет микротрещин. На пол (расход на 1 м2) «Старатели» с покрытием слоем 1 см потребуется 16 кг сухого материала. Для приготовления раствора потребуется 5-6 литров воды на 25 кг смеси. Срок изготовления 40 минут.

Смесь «Найденная» для устройства полов наносится вручную или механизированным способом.Применяется в офисных, производственных, жилых помещениях. Расход наливного пола на 1 м2 «Найдено» при толщине слоя 0,3 см составляет 4,5 кг.

Покрытие «Юнис» позволяет создать гладкую и прочную поверхность. Применяется для выравнивания бетонных оснований и стяжек при значительном отклонении от нормы (до 10 см). Приготовленная масса быстро застывает, поэтому использовать ее необходимо 30 минут, иначе она потеряет свои свойства. Расход настила пола на 1 м2 «Юнис» с тонким слоем шпатлевки толщиной до 1 мм составит 1.3 кг и 3,9 кг при толщине покрытия 3 мм.

При использовании смеси «Волма» поверхность оставляет идеально ровную. Благодаря консистенции смесь легко растекается и равномерно заполняет все неровности. Расход наливного пола на 1 м2 «Волма» при заливке слоя толщиной 0,5-0,7 см составляет 4 кг.

Подготовка поверхности к укладке наливного пола

Перед тем, как приступить к работе, необходимо подготовить поверхность: очистить ее от разных пятен и смазать шлифовальной машиной, а затем убрать мусор пылесосом.После этого пол обрабатывается грунтовкой, хорошо просушивается. Бетонное покрытие или стяжка могут иметь трещины, поэтому их оклеивают стекловолокном и засыпают кварцевым песком. Швы на бетонном основании заполняются герметиком. За сутки из щелей убирают излишки песка. Поверхность загрунтована полимерным компаундом для улучшения адгезии. Качество пола зависит от чернового покрытия, и если основание было правильно подготовлено, то под пол расход грунтовки на 1 м2 составит 250 грамм.

Дизайн пола

Через сутки после грунтования бетона поверхность можно наносить на основной слой. Но для начала нужно рассчитать, какой толщины будет пол. Расход необходимых материалов и смеси на м2 рассчитывается с учетом перепадов пола и всех его неровностей. Для установления объема комнаты лазерный уровень определяет горизонт основания, затем с разных точек рассчитываются разности.

Рассчитывается относительная высота - разница в размерах делится на 2.Минимальная толщина покрытия рассчитывается по относительной и минимально допустимой высоте складывания.

Заливка пола

Перед укладкой пола стены покрывают пленкой. Чтобы смесь не затекла под панели, всю основу по периметру помещения заклеивают монтажной лентой. На подготовленном к заливке субстрате необходимо перейти в сменную обувь. По затопленному полу рекомендуется ходить в пейнтбольных шарах, с которыми можно выходить на отдельные участки, выравнивая поверхность и не оставляя следов.

Заливка теплого пола начинается с самых высоких точек. Залившуюся смесь размазывают шпателем и ракелем. Если образуются пузырьки, их удаляют игольчатым валиком. В помещении при укладке пола не должно быть влаги и сквозняков. На протяжении всего времени высыхания покрытия все работы проводятся при температуре выше 10 ° С.

Выбирая наливной пол, можно существенно снизить затраты. Перед установкой уложите слой чистого кварцевого песка. После того, как поверхность хорошо высохнет (через 5-10 дней), можно наносить чистовой пол.Расход на 1 м2 - 0,5 кг смеси при толщине слоя 0,1 см.

Уход за полом

После высыхания пола на поверхность наносится защитная пленка. Он защищает его от повреждений и заменяется каждые полгода. Наполнитель пола рекомендуется протирать мастикой каждые три месяца. Для уборки помещений с таким напольным покрытием используйте: пылесос, щетку, теплую воду и мягкое моющее средство. У пола есть один недостаток - он очень боится тяжелых и острых предметов.

.

Ожидания, подтвержденные измерениями на практике []

operation: operation_and_experience: measure_results: energy_use_measurement_results


1. Результаты измерений для стандарта пассивного дома

Многолетний опыт и статистически подтвержденные результаты измерений фактических значений потребления доступны для зданий пассивного дома.По этим результатам можно судить о надежности концепции пассивного дома.

Со всеми строительными стандартами существуют значительные различия в потреблении из-за поведения пользователей, даже в случае идентично построенных зданий. Следовательно, потребление необходимо всегда измерять для достаточно большого числа идентично построенных домов, чтобы можно было усреднить влияние, зависящее от использования, тем самым позволяя сравнивать качество строительства. Фиг.1 предоставляет обзор результатов измерений для 41 дома с низким энергопотреблением и в общей сложности 106 домов пассивного типа в Германии. Из результатов этих измерений можно сделать ряд выводов.

Рис. 1. Обзор замеров расхода. Эта диаграмма суммирует измеренное потребление тепла от четырех жилых массивов, низкоэнергетического поселка (слева) и трех поселений пассивного дома.


Низкоэнергетический поселок в Нидернхаузене с 41 таунхаусом используется в качестве эталона для сравнения.Отдельные значения показаний теплосчетчика за 1994 год показаны в рис. 2 (измерение: [Loga 1997]). Среднее значение для всех измеренных домов составляет 65,6 кВтч / (м²a) . (Здесь и далее жилая площадь используется в качестве справочной величины для потребления, как это обычно делается для счетов-фактур на отопление).

Рис. 2: Статистика потребления для низкоэнергетического поселения с 41 домом в Нидернхаузене (Германия), которое было впервые заселено в 1992 году.Среднее потребление 65,6 кВтч / (м²a) коррелирует с расчетным потреблением 68 кВтч / (м²a) [PHPP] в пределах достижимой точности. Кривая, добавленная на диаграмму, представляет собой соответствующее нормальное распределение. Измерения расхода были выполнены Т. Лога и М. Гросклос. [Loga 1997]


Это среднее значение значительно ниже, чем среднее потребление тепла в существующем жилом фонде в Германии. Если теплотворная способность 112 кВтч / (м²a) используется в качестве текущего (2013 г.) эталонного значения для Германии, соответствующего среднему потреблению тепла в многоквартирных домах, счета за которые выставляются в соответствии с потреблением [techem 2014], то потребление в 1997 г. в низкоэнергетическом поселке не менее 41.На 5% меньше сегодняшнего среднего потребления . Кстати, хотя этот поселок построен в 1991 году, стандарты строительства все же лучше, чем требования действующего в настоящее время немецкого энергетического стандарта (EnEV).

Рис. 2 также показывает, что отдельные значения разбросаны вокруг среднего значения в зависимости от использования. Влияние поведения пользователей на потребление даже довольно велико. Однако это касается не только энергосберегающих, но и плохо утепленных домов.Стандартное отклонение (мера среднего отклонения отдельных значений от среднего значения) для этого населенного пункта составляет 13,6 кВтч / (м²a) или 21% от среднего значения потребления.

Отклонения из-за поведения пользователя в значительной степени усредняются, если используется среднее значение, тем более для большого количества идентично сконструированных единиц. Среднее значение потребления для этого жилого комплекса является статистически точным до ± 2 кВтч / (м²a). Таким образом, статистически подтверждено, что стандарт низкого энергопотребления ведет к значительной экономии энергии (41.5% ± 1,8%) по сравнению с нынешним строительным фондом.

1.1. Поселок пассивного дома в Висбадене / Дотцхейме

Это был первый проект поселения пассивного дома в Германии (построен в 1997 году компанией Rasch & Partner) и состоит из 22 домов. Рис. 3 документирует показания счетчиков тепла за зимний сезон 1998/99 г. Среднее значение было определено как 13,4 кВтч / (м²a) . Это означает, что среднее потребление в поселке пассивного дома на 80% ниже, чем в поселке с низким энергопотреблением в Нидернхаузене.

Рис. 3: Статистика потребления для поселения Пассивный дом в Висбадене (Германия). Поселок с 22 пассивными домами был построен в 1997 году. Среднее потребление 13,4 кВтч / (м²a) очень хорошо коррелирует с ранее рассчитанной потребностью в 13 кВтч / (м²a) [PHPP]. Измерения Висбаден-Доцхайм: [Ebel 2003]; [Feist / Loga / Großklos 2000].


Стандартное отклонение индивидуальных значений поселка Висбаден составляет ± 5,3 кВтч / (м²a) и намного ниже, чем у поселения с низким энергопотреблением.Однако по сравнению с гораздо меньшим средним потреблением влияние поведения пользователя более заметно. Полученное среднее значение статистически точно составляет ± 1,1 кВтч / (м²a). Таким образом, экономия энергии благодаря стандарту пассивного дома является статистически надежной. Это:

(80% ± 2%) экономии по сравнению со стандартом низкой энергии, и не менее
(88% ± 1%) экономии по сравнению со средним потреблением тепла в Германии

1.2.Пассивный дом в Ганновере / Кронсберге

Поселок пассивных домов в Ганновере / Кронсберге состоит из 32 практически идентичных домов с террасами, построенных как смешанные конструкции в соответствии со стандартом пассивных домов. Поселок построен в 1998/99 году; все агрегаты были разработаны индивидуально. Они были частью общеевропейского проекта CEPHEUS. Рис. 4 документирует показания теплосчетчиков в отопительный сезон 2001/2002 гг. Среднее значение - 12.8 кВтч / (м²a) . Таким образом, потребление в этом проекте пассивного дома примерно на 81% меньше, чем в низкоэнергетическом комплексе в Нидернхаузене ([Peper / Feist 2002]).

Рис. 4: Статистика потребления для поселения пассивных домов в Ганновере / Кронсберге (Германия): поселок с 32 пассивными домами был впервые заселен в 1999 году. Среднее потребление на третий год эксплуатации (2001/2002) составило 12,8 кВтч / (м²a). Расчетный спрос согласно [PHPP] составил 13.5 кВтч / (м²a).


Средние значения потребления всех занятых пассивных домов в жилой застройке, измеренные с помощью счетчиков тепла за все исследованные периоды, составили:

1. Период отопления 1999/2000: 14,9 кВтч / (м²a)
2 Период отопления 2000/2001: 13,3 кВтч / (м²a)
3. Период отопления 2001/2002: 12,8 кВтч / (м²a)

Чрезвычайно низкие значения потребления тепла для жилого дома пассивного дома в Ганновере / Кронсберге составляют поэтому также статистически надежно - стандартное отклонение отдельных значений составляет 6.6 кВтч / (м²a), среднее значение точно определено до ± 1,2 кВтч / (м²a).

1,3. Пассивный дом в Штутгарте / Фейербах

Пассивный дом в Штутгарте / Фейербахе с 52 террасными и отдельными домами был завершен в 2000 году архитектурным бюро Рудольф. На рис. 5 указаны значения потребления за отопительный сезон 2001/2002 гг. Среднее значение потребления составляет 12,8 кВтч / (м²a) [Reiß / Erhorn 2003].В этом жилом комплексе есть несколько выбросов, которые можно четко идентифицировать как таковые.

Рис. 5: Статистика потребления для жилого комплекса «Пассивный дом» в Штутгарте / Фейербахе (Германия). Поселок с 52 пассивными домами завершен в 2000 году (архитектурное бюро Рудольф). Среднее потребление составило 12,8 кВтч / (м²a). Расчетная потребность в соответствии с [PHPP] составила 13,5 кВтч / (м²a).


Чрезвычайно низкие значения потребления тепла в жилом комплексе «Пассивный дом» в Штутгарте / Фейербахе также подтверждены статистикой - стандартное отклонение отдельных значений составляет 5.5 кВтч / (м²a), среднее значение точно определено до ± 0,8 кВтч / (м²a).

1,4. Заключение по поселениям Пассивного Дома

Сравнение результатов измерений для четырех жилых поселков в обзоре (рис. 6) ясно показывает огромную разницу в значениях потребления тепла в домах с низким энергопотреблением и пассивных домах. Здесь очевидна хорошая корреляция расчетов PHPP со средним значением потребления.

Что касается значений, рассчитанных в соответствии с PHPP, следует также отметить, что расчеты были выполнены и опубликованы во время планирования и до строительства соответствующих зданий. Это не процессы расчета с последующей «корректировкой». Основываясь на проектах строительства, отслеживаемых авторами на практике, причины, по которым часто наблюдаются большие расхождения между расчетами (ожидаемыми результатами) и измерениями (фактическими результатами) во многих строительных проектах без гарантии качества, в основном заключаются в том, что характерные значения для компоненты и технические системы слишком оптимистичны, или подходы к расчету неполны (например,г. подходы к затенению неадекватны или внутреннее тепловыделение слишком велико), или ввод в эксплуатацию строительных работ отклоняется от первоначального плана (например, потому что отсутствие теплового разделения в случае окон по-прежнему считается эквивалентным).

Рис. 6: Эта диаграмма суммирует сравнение измерений потребления эталонного поселения (слева, 65 кВтч / (м²a)) и трех комплексов пассивных домов (около 13 кВтч / (м²a) в каждом случае). Потребление в пассивных домах на основе этих измеренных значений примерно на 80% меньше, чем в домах с низким энергопотреблением и без того хорошего стандарта.Все средние значения довольно хорошо согласуются со значениями, ранее рассчитанными с помощью пакета планирования пассивного дома (PHPP) .

2. Независимое подтверждение от других проектов

Дальнейшие эмпирические исследования в других регионах мира независимо подтвердили результаты, задокументированные здесь:

2.1. Пассивный дом Гремпштрассе, Франкфурт-на-Майне

В 2002 году во Франкфурте было построено многоквартирное здание пассивного дома Wohnen bei St. Jakob.М. Принадлежит одноименному товариществу собственников. Строительным подрядчиком выступила компания Frankfurter Aufbau AG, а здание спроектировало архитектурное бюро «Фактор 10». Особенностью этого блока из 19 квартир общей площадью 1842 м² является нетипичная северная ориентация восьми квартир, в которых главный фасад с большими окнами выходит на север, так как отсюда открывается хороший вид на горы Таунус. В отопительный период 2003/2004 г. среднее значение расхода тепла составляет 900 10 12.2 кВтч / (м²a) [Peper / Feist / Pfluger 2004]. У северной части здания есть только предельное потребление, которое на 4 кВтч / (м²a) выше, чем в другой части. Это дает понять, что даже эту проблему, связанную с ориентацией здания, можно легко решить. В этом проекте измеренный результат также хорошо согласуется с ранее рассчитанным значением спроса (PHPP).

.

STP - стандартные температура и давление и NTP

Поскольку температура и давление воздуха варьируются от места к месту, для сравнения испытаний и документации химических и физических процессов необходим стандартный справочник.

Примечание! Существует множество альтернативных определений стандартных стандартных условий температуры и давления. Поэтому следует осторожно использовать определения STP, NTP и другие определения. Всегда важно знать эталонную температуру и эталонное давление для фактического используемого определения.


STP - стандартные температура и давление

STP обычно используется для определения стандартных условий для температуры и давления, которые важны для измерений и документирования химических и физических процессов:

  1. STP - Стандартные температура и давление - определяется IUPAC (Международный союз чистой и прикладной химии) в виде воздуха при температуре 0 o C (273,15 K, 32 o F) и 10 5 паскалей (1 бар).
  2. STP - обычно используется в британской системе единиц и системе единиц США - как воздух при 60 o F ​​(520 o R, 15.6 o C ) и 14,696 фунтов на квадратный дюйм (1 атм, 1,01325 бар абс.)
  • также называется «1 стандартная атмосфера»
  • В этих условиях объем 1 моля газа составляет 23,6442 литра.
  • Эти условия наиболее часто используются для определения термина объема Sm 3 (Стандартный кубический метр)

Примечание! Прежнее определение STP IUAPC для 273,15 K и 1 атм (1,01325 10 5 Па) больше не поддерживается.Однако

    • Эти условия по-прежнему наиболее часто используются для определения объема. Нм 3 (нормальный кубический метр)
    • В этих условиях объем 1 моля газа составляет 22,4136 литра.

1 Па = 10 -6 Н / мм 2 = 10 -5 бар = 0,1020 кп / м 2 = 1,02x10 -4 м H 2 O = 9,869x10 -6 атм = 1,45x10 -4 фунтов на кв. Дюйм (фунт-сила / дюйм 2 )

NTP - нормальная температура и давление

NTP обычно используется в качестве стандартного условия для тестирования и документирования производительности вентиляторов:

  • NTP - Нормальная температура и давление - определяется как воздух при 20 o C (293.15 K, 68 o F) и 1 атм ( 101,325 кН / м 2 , 101,325 кПа, 14,7 фунтов на кв. Дюйм, 0 фунтов на кв. Дюйм, 29,92 дюйма ртутного столба, 407 дюймов H 2 O, 760 торр). Плотность 1,204 кг / м 3 (0,075 фунта на кубический фут)
    • В этих условиях объем 1 моля газа составляет 24,0548 литра.
Пример - Повышение давления вентилятора

Вентилятор, который создает статическое давление 3 дюйма H 2 O (хорошее среднее значение) - увеличит абсолютное давление воздуха на

((3 дюйма H 2 O) / (407 дюймов H 2 O)) (100%) = 0.74%

SATP - стандартные температура и давление окружающей среды

SATP - стандартные температура и давление окружающей среды также используется в химии в качестве эталона:

  • SATP - стандартные температура и давление окружающей среды является эталоном с температурой 25 o C (298,15 K) и давление 101,325 кПа.
    • В этих условиях объем 1 моля газа составляет 24,4651 литра.


ISA - Международная стандартная атмосфера

ISA - Международная стандартная атмосфера используется в качестве ссылки на летно-технические характеристики воздушного судна:

  • ISA - Международная стандартная атмосфера определяется как 101.325 кПа, 15 o C и влажность 0%.


Стандартная атмосфера ИКАО

Стандартная модель атмосферы, принятая Международной организацией гражданской авиации (ИКАО):

  • Атмосферное давление: 760 мм рт.ст. = 14,7 фунт-сила / кв.дюйм
  • Температура: 15 o C = 288,15 K = 59 o F ​​
.

Площадь номера на человека

Приведенную ниже таблицу можно использовать в качестве ориентира для определения требуемой площади (квадратный метр или квадратный фут) на человека в некоторых типичных зданиях и помещениях. Эти значения можно использовать для расчета явной и скрытой тепловой нагрузки на человека.

9 0006
Тип здания Тип помещения Площадь на человека
2 ) (футы 2 )
Квартиры 100 - 400
Сборочный корпус Аудитория 0.6
Библиотека 5
Кинотеатр 0,6
Концертный зал 0,6
Театр 0,6
Банки 50 - 150
Бары 15-50
Кафетерии 10-50
Церкви 5-20
Клубные дома 15-50
Коктейльные залы 15-50
Компьютерные залы 80-150
Судебные палаты 50-150
Стоматологические центры Клиника и офисы 50–150
Универмаги 15-75
Столовые 10-50
Аптека 15-50
Заводы Сборочный цех 2 - 5
Заводы Легкая промышленность 10-20
Заводы Тяжелая промышленность 20-30
Пожарные части 100-500
Гостиницы Комнаты 5
Вестибюль 0.6
Сборочная 1,5
Больницы Общие помещения 50-150
Палаты пациентов 80-150
Детский сад 2-3
Кухни 50–150
Библиотеки 30–100
Обеденные столы 10–50
Залы для обедов 10–50
Торговые центры 50–100
Медицинские центры Клиника и офисы 50–150
Мотели, общежития Общественные места 100-200
Гостевые комнаты, общежития 100-200
Муниципальные здания 50-150
Музеи 30-100
Ночные клубы 15-50
Палаты для престарелых 80-150
Офисы Отдельный офис 10
Конференц-зал 1.5
Полицейские участки 100-500
Почтовые отделения 100-500
Точное производство 100-300
Жилой 200-600
Ресторан С обслуживанием 1,5
Без обслуживания 1
Розничные магазины 15-75
Школы Аудитории 0.6
Классные комнаты 2
Коридоры 2
Лаборатория 3
Магазины Розничная торговля 2
Супермаркеты
Спорт Гимназия 1,5
Бассейны 4
Супермаркеты 50-100
Таверны 15 - 50 Ратуши 50 - 150
  • 1 м 2 = 10.764 фута 2
  • 1 фут 2 = 0,0929 м 2

Примечание! - помните о местных ограничениях, кодах и их минимальных значениях. Они могут значительно отличаться от приведенных выше цифр.

Норма занятости

Норма занятости - максимальное количество человек на единицу площади.

Если минимальная площадь на человека составляет 100 кв. Футов - коэффициент занятости составляет 1/100 = 0,01 человека на кв.футов - или 10 человек на 1000 кв. футов .

.

Смотрите также